Cancer Risk Assessment Tools in Primary Care: A Systematic Review of Randomized Controlled Trials

J.G. Walker, MPH, PbD⁴ S. Licqurish, PbD⁴ P.P.C. Chiang, PbD⁴ M. Pirotta, MBBS, PbD⁴ J.D. Emery, MBBCh, DPhil^{4,2,3}

¹Department of General Practice, Melbourne Medical School, University of Melbourne, Carlton, Australia

²General Practice, School of Primary Aboriginal and Rural Health Care, University of Western Australia, Crawley, Australia

³The Primary Care Unit, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom

Conflicts of interest: authors report none.

CORRESPONDING AUTHOR

Jennifer Walker, MPH, PhD Department of General Practice, Melbourne Medical School University of Melbourne 200 Berkeley St, Carlton Victoria 3053, Australia walker@unimelb.edu.au

ABSTRACT

PURPOSE We conducted this review to identify published randomized controlled trials (RCTs) of cancer risk assessment tools used in primary care and to determine their impact on clinical utility (clinicians), screening uptake (patients), and psychosocial outcomes (patients).

METHODS We searched EMBASE, PubMed and the Cochrane databases for RCTs of cancer risk assessment tools in primary care up to May 2014. Only studies set in primary care, with patients eligible for screening, and English-language articles were included.

RESULTS The review included 11 trials of 7 risk tools. The trials were heterogeneous with respect to type of tool that was used, type(s) of cancer assessed, and outcomes measured. Evidence suggested risk tools improved patient risk perception, knowledge, and screening intentions, but not necessarily screening behavior. Overall, uptake of a tool was greater if initiated by patients, if used by a dedicated clinician, and when combined with decision support. There was no increase in cancer worry. Health promotion messages within the tool had positive effects on behavior change. Trials were limited by low-recruitment uptake, and the heterogeneity of the findings necessitated a narrative review rather than a meta-analysis.

CONCLUSIONS Risk tools may increase intentions to have cancer screening, but additional interventions at the clinician or health system levels may be needed to increase risk-appropriate cancer screening behavior.

Ann Fam Med 2015;13:480-489. doi: 10.1370/afm.1837.

INTRODUCTION

ancer screening programs have been introduced in many countries for breast,¹ colorectal,² and cervical³ cancer. With the growing recognition of the potential harms from population-based cancer screening programs,⁴ risk-stratified screening is being proposed as a way of reducing harm and focusing on populations at higher risk of cancer. This concept can also be applied to primary preventive measures, especially as the evidence to support chemoprevention for common cancers such as breast and colorectal builds.^{5,6} If risk-stratified cancer prevention is to be implemented, it requires risk assessment tools that can be used in primary care to identify those most likely to benefit from tailored prevention.⁷

Cancer risk prediction models, based on epidemiologic data, calculate an individual's likelihood of developing cancer, identify an individual's risk of carrying a genetic mutation for a specific cancer (eg, BRCA 1 or BRCA 2), or both.^{8,9} Newer risk models are beginning to incorporate genomic profiles and environmental exposures,¹⁰ a trend that is likely to grow with the movement toward precision medicine.¹¹ Risk assessment tools facilitate the translation of these risk models to estimate an individual's likelihood of developing different cancers by assessing the combination of risk factors including genetic, environmental^{12,13} and behavioral¹² risk factors. Examples include the US National Cancer Institute (NCI) colorectal cancer risk tool,¹⁴ which incorporates the risk model developed by Freedman et al¹⁵,

the NCI breast cancer risk tool, which applies the Gail breast cancer risk prediction model¹⁶; and MelaPRO for assessing risk of melanoma.¹⁷

Primary care has an important role in the delivery of cancer screening programs and can increase screening uptake.18 Successful implementation of risk assessment tools into primary care is needed if risk-stratified cancer prevention and the promises of precision medicine are to be achieved.

In this article, we report the first systematic review of randomized controlled trials (RCTs) that have tested cancer risk tools in primary care. The review specifically investigated measures of clinical utility such as clinician referrals and patient cancer screening behaviors, as well as psychosocial outcomes.

METHODS

This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Table 1)¹⁹

and is registered with Prospero (registration number: CRD42014008892).20

We searched the PubMed, EMBASE, and Cochrane databases for English-language articles published up to May 2014, focusing on search terms based on the concepts of "risk assessment tools," "cancer," "primary care," and outcomes such as "cancer worry," "risk perception," "clinician confidence," "referral behavior," and "screening behavior." Additional articles were identified through citation tracking and reference checking.

Eligibility Criteria

Studies were ineligible if they involved tools that did not estimate cancer risk, assessed prognostic tools for patients with an existing cancer diagnosis, were not implemented in a primary care setting, or did not evaluate the tool using RCTs (Figure 1).

The populations studied included primary care clinicians (general practitioners, family physicians, and community medicine clinicians) and patients of pri-

Population	Intervention	Comparison	Outcomes	Study Design
Main concept				
Primary care practitioners	Cancer risk assessment	Standard clini-	Clinicians	Randomized con-
Primary care patients	tool to determine a primary care patient's individual risk of cancer	cal care	Clinical outcomes including appropriate referral behavior	trolled trials
			Patterns and accuracy of risk perception	
			Cancer knowledge	
			Frequency of use	
			Acceptability by physicians	
			Confidence of use by clinicians	
			Attitudes to the tool	
			Patients	
			Patient cancer anxiety/worry	
			Acceptability by patients	
			Patient behavior including uptake of sec- ondary referral behavior	
			Adherence to screening recommendations	
			Intention to undergo screening	
			Satisfaction with consultation	
Synonyms/search terms				
Primary care	Risk-assessment tool	Standard care	Acceptability	-
Primary care clinicians	Clinical tool	Usual care	Effectiveness	
Primary care physicians	Risk-prediction tool		Frequency of use	
Family practice	Decision-support tool		Referral data	
General practice	Risk-assessment model		Appropriateness of management	
GPs	Computer decision-		Risk accuracy	
Patients	support tool		Patient risk perception	
	Adult population		Psychosocial outcomes	
	Cancer		Cancer worry	
	Family history [and syn- onyms for family]		Patient behavior	

mary care clinicians, as long as they were adults without an existing (known) cancer diagnosis (Table 1).

Study Appraisal and Synthesis Methods

The primary author (J.W.) assessed all citation abstracts, which were reviewed by a second author (M.P.). Two other researchers (P.P.C.C., S.L.) assessed full-text articles. Data were extracted and studies were critically appraised for bias by 3 reviewers (J.W., P.P.C.C., S.L.) using the Cochrane Collaboration's tool for assessing risk of bias²¹ (Table 2).²²⁻³¹

The heterogeneity of interventions and outcomes precluded any meta-analysis of the data. The review provides a narrative synthesis of the data.

RESULTS

Study Selection

Our database searches identified 989 studies. After title and abstract review, and removal of 37 duplicates, 210 full-text articles were assessed for eligibility. Eleven articles reporting trials of 7 risk tools were included (Table 1 and Figure 1).

Study Characteristics

The review included trials of risk assessment tools that were either completed by clinicians with patients or self-completed by patients. Risk tools included web-based risk tools, paper-based risk checklists, and multifaceted interventions involving patient resources, clinician education, or both. The studies included a wide range of outcomes and cancers (Table 2).

The trials varied in their design, including the unit of randomization (clinic or patient) and the population testing the intervention (clinician or patient). Of the 11 studies, 3 randomized by clinic and trialed a clinician-targeted intervention, 27, 29, 32 3 randomized by clinic and trialed a patient-targeted intervention,24-26 and 5 randomized by patient and trialed a patient-targeted intervention.^{22,23,28,30,31} One study randomized patients by clinic days to reduce potential contamination.²⁸ We examined the unit of randomization as a possible source of heterogeneity of the results and found no clear trends (Table 3).

Recruitment proportions of eligible study participants varied from very low

(14% to 25%)^{24-26,30,31} to very high (93% to 95%).^{28,32} Contacting eligible patients by mail and following them up with a telephone call yielded a low recruitment.^{24-26,30,31} More successful recruiting (93% to 95% of eligible participants) was achieved with a dedicated research assistant or practice nurse recruiting eligible patients in the primary care waiting room before their appointment.^{28,32} Similarly, when the intervention was delivered by a practice nurse, 75% of patients completed a risk assessment,²⁸ but when clinicians were required to complete training, engagement was low (12% of intervention general practitioners attended).²⁹

Outcomes

Study outcomes are shown in Table 3 and discussed in detail below.

Accuracy of Patient Risk Perception

Overall, there was limited evidence that risk assessment tools altered patients' risk perception, except in specific subgroups. For example, in the Family Healthware Impact trial,²⁶ there was a significant increase

in accuracy of risk perception in those patients who underestimated their risk of colorectal cancer at baseline, but not in women who underestimated their risk of breast cancer. The trial of the Harvard Colorectal Cancer Risk Assessment Tool specifically tested different risk presentation formats. In people who either underestimated or overestimated their risk at baseline, accuracy of risk perception was improved by either absolute risk alone or absolute risk plus relative risk formats, compared with the control patients.^{26,30,31} The Genetic Risk Assessment on the Internet with Decision Support (GRAIDS) trial and a trial assessing cervical cancer risk found no significant differences in risk accuracy for colorectal cancer, $^{\rm 27}$ breast cancer, $^{\rm 27}$ or cervical cancer. $^{\rm 32}$

Patient Behaviors

Four trials explored screening behavior outcomes, including screening intentions, patient booking/planning a screening test, and patient completing a screening test.

Schroy et al²² tested a pair of interventions. Intervention 1 was a shared decision-making tool, and intervention 2 was a combined shared decision-making tool plus a risk assessment tool (Your Disease Risk), comparing them both with usual care. Immediately

Table 2.	Characteristics o	f Trials of Cance	er Risk Assessment	Tools in Primary Care (N = 11)

Author, Year, Risk Tool,	5. ()				Overall Risk of
Setting	Disease(s)	Sample	Study Design	Intervention(s)	Bias ^a
Schroy et al ²² 2011	CRC	665 patients (223 combined intervention; 212 decision aid alone: 231 control)	RCT (3 groups) Patients random-	Control: usual care and generic lifestyle change advice for disease prevention	Low/ unclear
Your Disease Risk		50 clinicians (47 gen-	ized before routine visit	Intervention 1: decision aid for CRC screening	
United States	practitioners)	care clinician	Intervention 2: decision aid for CRC screening plus CRC personalized risk		
a I (22)		2 clinics		assessment	
Schroy et al ²³ 2012	CRC	825 patients (280 combined intervention; 269 decision aid alone: 276 control)	RCT (3 groups) Patients random-	Control: usual care and generic lifestyle change advice for disease prevention	Low/ unclear
Your Disease Risk United States		61 clinicians (47 general routine visit		Intervention 1: decision aid for CRC screening	
		physicians; 3 nurse practitioners)	care clinician	Intervention 2: decision aid for CRC screening plus CRC personalized risk assessment	
Rubinstein et al ²⁴	CRC BC and	2 CIIIIICS 3 283 nationts /2 077 inter-	Cluster RCT	Control: standard print messages about	Unclear
2011 OC, ^b hear disease,	OC, ^b heart disease,	vention; 1,206 control)	Cluster random-	screening and lifestyle choices recom- mended for general health	uncical
Family Health- ware Impact Trial (1)	stroke, and diabetes	18 control)	level	Intervention: patient self-completed risk assessment using the Family Health- ware risk assessment tool; personalized	
United States				risk prevention messages tailored to familial risk	
Ruffin et al ²⁵ 2011	CRC, BC, and OC, ^b heart disease,	3,344 patients (2,105 inter- vention; 1,239 control) 41 clinics (23 intervention;	Cluster RCT Cluster random- ization at clinic	Control: standard print messages about screening and lifestyle choices recom- mended for general health	Unclear
Family Health- ware Impact Trial (2) United States	t diabetes		Intervention: patient self-completed risk assessment using the Family Health- ware risk assessment tool; personalized risk prevention messages tailored to familial risk		
Wang et al ²⁶ 2012	CRC, BC, and OC, ^b heart disease,	3,344 patients (2,105 inter- vention; 1,239 control)	Cluster RCT Cluster random-	Control: standard print messages about screening and lifestyle choices recom- mended for general health	Unclear
Family Health- ware Impact Trial (3) United States	stroke, and diabetes	18 control)	level	Intervention: patient self-completed risk assessment using the Family Health- ware risk assessment tool; personalized risk prevention messages tailored to familial risk	
					continued

BC = breast cancer; CRC = colorectal cancer; GP = general practitioner; GRAIDS = Genetic Risk Assessment on the Internet with Decision Support; OC = ovarian cancer; Pap = Papanicolaou; RCT = randomized controlled trial.

^a Bias assessed using the Cochrane Collaboration risk of bias based on: (1) sequence generation; (2) allocation concealment; (3) blinding of participants, personnel, and outcome assessors; (4) assessment of incomplete outcome data; (5) selective outcome reporting; (6) "other" sources of bias not listed. Low risk of bias = low risk of bias across all domains. Unclear risk of bias = unclear risk of bias for 1 or more key domains. High risk of bias = high risk of bias for 1 or more domains. ^b These trials assessed patients' risk for BRCA mutation rather than specifically discussing ovarian cancer screening.

Author, Year, Risk Tool, Setting	Disease(s)	Sample	Study Design	Intervention(s)	Overall Risk of Biasª
Emery et al ²⁷ 2007 GRAIDS Trial	CRC, BC, and OC ^b	240 patients received GRAIDS intervention; 84 referred to cancer genet- ics clinic from control	Cluster RCT Cluster random- ization at clinic level	Control: 45-minute presentation to all GPs in practice on cancer genetics and copy of referral guidelines for cancer genetics clinic	Low
England		practices 45 clinics (23 intervention; 22 control)		Intervention: 45-minute presentation on cancer genetics to all GPs in practice and copy of referral guidelines for cancer genetics clinic; 1-2 "lead clini- cians" per practice trained to use web- based GRAIDS risk assessment tool for OC, CRC, and BC	
Campbell et al ²⁸	Cervical cancer	679 female patients (354 intervention; 325 control)	RCT	Control: patient self-completed health risk survey	Low/ unclear
Health risk survey Australia		2 clinics	at patient level	Intervention: patient self-completed health risk survey and was given sum- mary including eligibility for cervical screening and date of last Pap test	
Wilson et al ²⁹ 2006	BC	346 clinicians (230 inter- vention; 116 control)	Cluster RCT (2:1) Randomization	Control: standard Scottish guidelines to assess risk for referral to cancer genet- ics sent to GPs	Low
Risk assessment 80 checklist 2 Scotland		29 control)		Intervention: multifaceted intervention including risk assessment checklist for CRC, BC, and OC; information about cancer genetics; patient information booklets; web links cancer/genetics; e-mail link to cancer genetics services; referral letter proforma; education ses- sions about cancer genetics	
Emmons et al ³⁰ 2004	CRC	353 patients (134 absolute risk only; 146 absolute	RCT Bandomization	All participants used the Harvard Colorectal Cancer Risk Assessment Tool	Low
Harvard Colorec-		plus relative risk; 73 control)	at patient level	Control: patients received passive risk communication without risk presentation	
Assessment Tool United States		2 clinics		Intervention: patient risk tool providing 4 different combinations of presenta- tions of risk: (1) absolute and relative risk, (2) absolute risk only, (3) absolute and relative risk with the ability to manipulate the risk input to change the output, and (4) same as for (3) but absolute risk only	
Weinstein et al ³¹ 2004	CRC	353 patients (134 absolute risk only; 146 absolute	RCT Bandomization	All participants used the Harvard Colorectal Cancer Risk Assessment Tool	Low
Harvard Colorec- tal Cancer Risk		plus relative risk; 73 control) 2 clinics	at patient level	Control: patients received passive risk communication without risk presentation	
Tool United States				Intervention: patient risk tool providing 4 different combinations of presenta- tions of risk: (1) absolute and relative risk, (2) absolute risk only, (3) absolute and relative risk with the ability to manipulate the risk input to change the output, and (4) same as for (3) but absolute risk only	
Holloway et al ²²	Cervical	1,890 female patients	RCT	Control: no risk assessment	Low
2003 Risk assessment scale Wales	Cancel	control) 29 clinics (15 intervention; 14 control)	Randomization at clinic level	Intervention: practice nurse risk communi- cation package including a paper-based risk assessment scale based on level of education, current smoking status, num- ber of years of oral contraceptive use, and number of sexual partners ever ³³	

Table 2. Characteristics of Trials of Cancer Risk Assessment Tools in Primary Care (N = 11) (continued)

BC = breast cancer; CRC = colorectal cancer; GP = general practitioner; GRAIDS = Genetic Risk Assessment on the Internet with Decision Support; OC = ovarian cancer; Pap = Papanicolaou; RCT = randomized controlled trial.

^a Bias assessed using the Cochrane Collaboration risk of bias based on: (1) sequence generation; (2) allocation concealment; (3) blinding of participants, personnel, and outcome assessors; (4) assessment of incomplete outcome data; (5) selective outcome reporting; (6) "other" sources of bias not listed. Low risk of bias = low risk of bias across all domains. Unclear risk of bias = unclear risk of bias for 1 or more key domains. High risk of bias = high risk of bias for 1 or more domains. ^b These trials assessed patients' risk for BRCA mutation rather than specifically discussing ovarian cancer screening. postintervention, intentions to order a screening test and intentions to complete a screening test were higher in both intervention groups relative to the control group (P <.001) with no difference between the 2 interventions. During the 12-month follow-up, participants using the decision aid alone (intervention 1) were more likely at every time point to book a test than the control group, and similarly, the decision aid increased the likelihood of completing a screening test when used alone, but not when combined with risk assessment.²³

In the Family Healthware Impact trial, there was an increase in colorectal cancer and breast cancer screening in both groups, but no difference in screening rates between the intervention and control groups at

Table J. Results of Thats of Cancel Risk Assessment tools in Filliary Car	Table 3. Re	esults of	Trials of	Cancer	Risk .	Assessment	Tools	in Pri	imary	Care
---	-------------	-----------	-----------	--------	--------	------------	-------	--------	-------	------

Outcomes Evaluated	Author, Year	Randomization Unit	Results
Patients			
Risk perception	Wang et al ²⁶ 2012	Clinic	In patients who underestimated their CRC risk, the intervention increased accuracy of risk perception (intervention 17% vs control 10% , $P = .05$).
			There was no increase in accuracy of risk perception between groups in women who underestimated their risk for BC (intervention 18% vs control 14%, $P = .4$) or OC (intervention 8% vs control 13%, $P = .4$).
	Emery et al ²⁷ 2007	Clinic	There was no difference in mean risk perception between patients referred from intervention vs control practices. Nonsignificant trend seen toward more accurate risk perception at the point of referral in intervention patients, with fewer overestimating their risk of cancer (OR = 1.50; 95% CI, 0.62-3.67; $P = .36$).
	Holloway et al ³² 2003	Clinic	There was no change in risk perception of cervical cancer between groups (OR = 1.07; 95% CI, 0.85-1.35).
	Emmons et al ³⁰ Weinstein et al ³¹ 2004	Patient	Accuracy of risk perception increased if risk was presented as combined relative and absolute risks or as absolute risk only vs control (for both people who over- estimated and who underestimated their risk preintervention).
Screening intention ^a	Holloway et al ³² 2003	Clinic	Women at intervention clinics were more likely to intend to reduce their screening interval for cervical screening in line with national guidelines (intervention 44% vs control 61%; OR = 0.51; 95% CI, 0.41-0.64; $P < .001$).
	Schroy et al ²² 2011	Patient	Mean intention scores to schedule a CRC screening test were higher for both intervention groups vs the control group: intervention group 1: DA (mean = 4.4; SD = 1.0); intervention group 2: DA+YDR (mean = 4.3; SD = 1.0); control group (mean = 3.9; SD = 1.4) (P <.001).
			Mean intention scores to complete a CRC screening test were higher for both intervention groups vs the control: intervention group 1: DA (mean = 4.3; SD = 1.0); intervention group 2: DA+YDR (mean = 4.3; SD = 1.0); control group (mean = 3.9; SD = 1.3) (<i>P</i> <.001).
	Schroy et al ²³	Patient	Booking a screening test:
	2012		DA group was more likely to book a CRC screening test than control group at 1 month (69.1% vs 60.5%, $P < .035$); 3 months (71.8% vs 62.3%, $P = .019$); 6 months (77.0% vs 65.2%, $P = .002$); and 12 months (80.7% vs 71.4%, $P = .011$).
			DA group was more likely than DA+YDR group to book a CRC screening test at 1 month (69.1% vs 60.4%, P <.031); 6 months (77.0% vs 67.1%, P <.010); and 12 months (80.7% vs 73.6%, P = .048).
Screening adherence ^b	Rubinstein et al ²⁴ 2011	Clinic	CRC screening increased in both groups over time: intervention, from 76% to 84%, and control, from 77% to 84% ($P = .95$).
			BC screening increased in both groups over time: intervention, from 73% to 82%, and control, from 78% to 85% ($P = .82$).
			No difference between intervention and control groups in screening adherence for CRC, BC, or OC (P >.09) after 6 months.
	Holloway et al ³² 2003	Clinic	No difference in actual cervical screening intervals and consistency with guide- lines between groups at 5 years: intervention 5%, control 7% (OR = 0.61; 95% CI, 0.36-1.03; P = .063).
	Schroy et al ²³	Patient	Completing a CRC screening test:
	2012		DA group was more likely than control group to complete test (43.1% vs 4.8%, $P = .046$)
	Campbell et al ²⁸ 1997	Patient	No difference in cervical screening in women identified as being "under-screened" ($P > 0.05$).
			continued

AM = adjusted mean; BC = breast cancer; CRC = colorectal cancer; DA = decision aid; OC = ovarian cancer; OR = odds ratio; RR = risk ratio; YDR = Your Disease Risk. ^a Participant has the intention to schedule or order a screening test.

^b Participant has completed a screening test.

Outcomes Evaluated	Author, Year	Randomization Unit	Results
Behavior change	Ruffin et al ²⁵ 2011	Clinic	Intervention group was more likely than control group to increase daily fruit and vegetable intake from ≤5 servings to ≥5 servings (OR = 1.29; 95% CI, 1.05-1.58) and to increase physical activity to 5-6 times/week for ≥30 minutes per day (OR = 1.47; 95% CI, 1.08-1.98).
Anxiety/worry	Emery et al ²⁷ 2007	Clinic	Cancer worry was lower in patients referred from intervention practices vs from control practices: mean difference = -1.44 (95% CI, -2.64 to 0.23 ; $P = .02$).
	Holloway et al ³² 2003	Clinic	Women at intervention practices were less likely to be "fearful of cervical cancer" (OR = 0.66; 95% CI, 0.47-0.93; $P = .019$), "concerned about chances of serious problems with a smear in the future" (OR = 0.70; 95% CI, 0.51-0.95; $P = .026$), and "anxious about a recent smear test" (OR = 0.81; 95% CI, 0.66-0.98; $P = .036$).
			No differences seen between women at intervention vs control practices in "con- cern about their smear result" (OR = 0.75; 95% CI, 0.45-1.24; P = .25).
	Emmons et al ³⁰ Weinstein et al ³¹ 2004	Patient	33% of all participants in the study had less cancer worry and 17% had more cancer worry after using the Harvard CRC Risk Tool (comparative data between groups not reported).
Knowledge	Emery et al ²⁷ 2007	Clinic	There was a nonsignificant increase in cancer knowledge in patients referred from intervention practices vs from control practices: BC knowledge mean difference = 0.11 (95% CI, -1.05 to 1.27) and CRC knowledge mean difference = 0.64 (95% CI, -1.01 to 2.29).
	Wilson et al ²⁹ 2006	Clinic	No difference seen in patient knowledge between groups for items "Stress is a major cause of BC" (23% vs 23%, P = .98); "Having one close relative with BC always increases your risk considerably" (88% vs 91%, P = .71); and "Minor injury to the breast can cause BC" (20% vs 23%, P = .78).
	Holloway et al ³² 2003	Clinic	85% of women at control practices incorrectly agreed that "cervical cancer is among the top 4 female cancers in the UK" compared with 22% of women at intervention practices ($OR = 0.05$; 95% CI, 0.02-0.11; $P < .0001$).
	Schroy et al ²² 2011	Patient	DA groups and DA+YDR group both had increased knowledge scores vs con- trol: intervention group 1 (DA): mean = 3.2; SD = 2.6; intervention group 2 (DA+YDR): mean = 3.0; SD = 2.5; control: mean = 0.8; SD = 2.2 (P <.001).
			No differences seen in knowledge scores between DA and DA+YDR groups.
Satisfaction	Schroy et al ²² 2011		Patient satisfaction was higher for DA or DA+YDR vs control: intervention group 1 (DA): mean = 50.7; SD = 6.2; intervention group 2 (DA+YDR): mean = 50.5; SD = 6.2; control group: mean = 46.7; SD = 7.9 (P <.001). Satisfaction did not differ between DA and DA+YDR groups.
Clinicians			
Appropriate screening and/or referral	Emery et al ²⁷ 2007	Clinic	Increase seen in referral rate to cancer genetics clinic in intervention practices; mean difference = 3.0 referrals per 10,000 patients per practice per year (95% CI, 1.2-4.8; $P = .002$).
			Referrals from intervention practices were more likely to be consistent with referral guidelines and therefore "appropriate" vs control practice referrals (OR = 5.2; 95% CI, 1.7-15.8; P = .006).
	Wilson et al ²⁹ 2006	Clinic	No difference seen between groups in appropriateness of referrals: intervention 58%, control 48% (RR = 1.18; 95% CI, 0.88-1.37).
Clinician confidence	Emery et al ²⁷ 2007	Clinic	Clinicians' confidence in managing people with a family history of cancer increased in intervention practices vs control practices ($P < .0001$).
	Wilson et al ²⁹ 2006	Clinic	No change seen in clinician confidence between groups for the following about BC risk: "taking appropriate family history" (60% vs 61%, $P = .93$); "knowing which patients need to be referred" (40% vs 33%, $P = .27$); "reassuring low-risk patients" (57% vs 52%, $P = .46$); and "being able to answer questions" (23% vs 22%, $P = .77$).

Table 3. Results of Trials of Cancer Risk Assessment Tools in Primary Care (continued)

AM = adjusted mean; BC = breast cancer; CRC = colorectal cancer; DA = decision aid; OC = ovarian cancer; OR = odds ratio; RR = risk ratio; YDR = Your Disease Risk. ^a Participant has the intention to schedule or order a screening test.

^b Participant has completed a screening test.

6 months. Of further note, the relatively high rates of cancer screening at baseline in both groups suggested a ceiling effect.²⁴

Holloway et al³² trialed the effect of a risk tool on reducing time intervals between cervical screening, which, at the time of the trial in the United Kingdom, was recommended every 5 years. In the short term, women in the intervention group intended to have screening less frequently, but at 5 years of follow-up, there was no significant difference.

In contrast, Campbell et al²⁸ tested a risk tool with women in primary care in Australia to identify

underscreened women and encourage them to have risk-based cervical screening. At 6 months of follow-up, women in the intervention group were no more likely to have had a cervical screening test than those in the control group.

The Family Healthware Impact trial also assessed impact on lifestyle behaviors.²⁵ The risk tool provided age-specific and sex-specific health messages to participants based on their family history of heart disease, stroke, diabetes, colorectal cancer, breast cancer, and ovarian cancer. After 6 months, participants in the intervention group were significantly more likely to have increased their daily fruit and vegetable intake, and their physical activity.

Patient Cancer Worry

None of the 3 trials that measured cancer-related anxiety found any increase after risk assessment. The GRAIDS trial recruited patients who had discussed concerns about their familial cancer risk with their general practitioner.²⁷ Patients referred to cancer genetics services from practices that used the GRAIDS tool had a lower cancer worry than patients referred from the control practices. In the cervical screening trial of Holloway et al,³² women receiving the intervention were less likely to be "fearful" of cervical cancer, less "concerned about chances of serious problems with a smear in the future," and less "anxious about a recent smear test."

In the trial of the Harvard Cancer Risk Assessment and Communication Tool, 33% of participants reported feeling less worried about getting colorectal cancer, but 17% reported increased worry about the disease after using the tool.^{30,31} These associations were seen regardless of whether the risk was presented as absolute risk, relative risk, or combined risk. There were no comparable control data in this trial for cancer worry.

Patient Knowledge

Patient knowledge was measured by understanding of population cancer risk, causes of cancer, and screening guidelines. Schroy et al²² found that both intervention groups had improvements in their knowledge of colorectal cancer screening guidelines, rationale, and goals. Women in the cervical screening trial had a greater understanding of screening guidelines and, in particular, screening intervals recommended for cervical screening as a result of the intervention.³² Wilson et al²⁹ found no differences in patient knowledge between groups despite patient and clinician education.

Patient Satisfaction

Only 1 study measured patient satisfaction. In this study, the use of a decision aid with or without a risk

tool improved patient satisfaction with making screening decisions compared with the control condition.²²

Appropriate Clinician Referrals, Screening, or Both Two trials from the United Kingdom looked at the effect of risk tools on "appropriateness of referrals" to cancer genetics services by comparing them against local referral guidelines.^{27,29} In the GRAIDS trial, risk assessment increased the proportion of appropriate referrals when compared with local guidelines that were implemented with the GRAIDS tool.²⁹ Although there was an increase in appropriate referrals based on the local guidelines, the actual proportion of patients found to be at high risk was no different after more detailed assessment at the genetics clinic. This finding suggests a lack of specificity of the referral guideline that is likely to be implemented more systematically using a risk tool.

Clinician Confidence

In the GRAIDS trial, clinicians' confidence in assessing patients' family history of cancer was increased.²⁷ In contrast, in the Scottish trial, no differences were observed in clinician confidence about family history risk assessment and referral.²⁹

DISCUSSION

This systematic review identified only 11 articles reporting trials of 7 cancer risk assessment tools in primary care. Overall, this sample represents a relatively small evidence base, especially in the context of the growing number of cancer risk tools available online. The findings suggest potentially beneficial effects of cancer risk assessment tools in terms of improving accuracy of patient risk perception and knowledge, intentions to have cancer screening, and changes in diet and physical activity, without causing an increase in cancer-specific anxiety. Effects on actual cancerscreening behaviors are less clear. Cancer risk assessment tools may also improve clinician confidence and appropriateness of referrals to cancer genetics services, although the evidence for this benefit is somewhat contradictory from only 2 trials. Risk tools were more successful when they were initiated by patient who were concerned about their family history (of cancer),²⁷ were used by a dedicated clinician, 27,32 included health promotion messages,²⁵ and included decision support within the tool.²³ Interventions were less successful when tested in trials that involved a passive system for using the risk assessment tool.²⁹

There are some important caveats. The trials included in this review were heterogeneous in terms of the precise nature of the intervention, the unit of randomization, how they were implemented, and the health care setting in which they were studied. Furthermore, some of the populations in which the tools were used were selected toward a group who had existing concerns about their risk, especially about their family history. For example, the relatively low recruitment rates in the US Family Healthware Impact trial probably were associated with response bias toward a well-educated sample with relatively high baseline rates of cancer screening. Additional methodologic weaknesses in some studies included small sample sizes and therefore potentially underpowered trials,^{28,30,31} poor recruitment rates^{22-24,26,29-31} lack of clinician engagement in the intervention,²⁹ and patient-reported outcomes that may be influenced by social desirability bias.²⁸ The unit of randomization was not a clear source of heterogeneity despite greater risk of contamination in the patient-randomized trials.

Previous systematic reviews have examined the effect of patient-oriented decision aids in screening³³ and also communication of risks in screening programs.³⁴ Our review differs in terms of the nature of the interventions and the populations studied, although the findings are consistent: communication of risks is associated with increased intention to screen, and patient-oriented decision aids can increase knowledge. Two of the included studies examined different methods of communicating risk. The way risks were presented across all trials varied, and none complied with current perceived best practice in presenting risk information as recommended by the International Patient Decisions Aid Standards.^{35,36}

If we are to move toward risk-stratified cancer screening, primary care clinicians will require simple tools to implement validated risk models, which are likely to incorporate genomic as well as lifestyle factors. As the GRAIDS trial demonstrated, risk tools are only as effective as the underlying risk model. Ideally, tools will be able to present absolute risks and the predicted effects of behavior change or chemoprevention on an individual's risk of cancer. Importantly, they need to be designed to present evidence in ways that highlight the risks of overscreening people at average or low risk as well as the benefit of screening in populations who are most likely to benefit.³⁷ Most of the trials to date have focused on a single cancer or those for which predictive genetic testing was relevant. Validated risk prediction models, however, exist for many common cancers that could ideally be incorporated into a single tool.

In conclusion, despite the existence of many cancer risk assessment tools, there is relatively limited evidence from RCTs of their effectiveness, especially in terms of their impact on risk-appropriate cancer screening behaviors. Risk tools may increase actual intentions to have cancer screening, but additional interventions at the clinician or system level may be needed to increase screening behavior. The results support the use of dedicated staff to maximize implementation of the intervention. The incorporation of health economic evaluation to determine the most cost-effective approaches to delivering risk-stratified cancer screening in primary care, and the potential added cost-benefit of genomic profiling within these trials, will be important outcomes to measure in future trials.

To read or post commentaries in response to this article, see it online at http://www.annfammed.org/content/13/5/480.

Key words: cancer screening; risk assessment tools; primary care; practice-based research

Submitted February 17, 2015; submitted, revised, May 14, 2015; accepted June 9, 2015.

Funding support: This work was supported by funding from the Victorian Comprehensive Cancer Centre, and the National Health and Medical Research Council of Australia (APP1042021).

References

- Australian Government Department of Health. BreastScreen Australia. http://www.cancerscreening.gov.au/internet/screening/ publishing.nsf/Content/breast-screening-1. Accessed Aug 21, 2014.
- Australian Government Department of Health. National Bowel Cancer Screening Program. http://www.cancerscreening.gov.au/ internet/screening/publishing.nsf/Content/bowel-screening-1. Accessed Jul 27, 2014.
- Australian Government Department of Health. National Cervical Screening Program. http://www.cancerscreening.gov.au/internet/ screening/publishing.nsf/Content/cervical-screening-1. Accessed Aug 21, 2014.
- Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening: an independent review. *Lan*cet. 2012;380(9855):1778-1786.
- Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. *Lancet*. 2011;377(9759):31-41.
- Cuzick J, DeCensi A, Arun B, et al. Preventive therapy for breast cancer: a consensus statement. *Lancet Oncol.* 2011;12(5):496-503.
- Burton H, Chowdhury S, Dent T, Hall A, Pashayan N, Pharoah P. Public health implications from COGS and potential for risk stratification and screening. *Nat Genet.* 2013;45(4):349-351.
- Marcus J, Page D, Watson P, Narod S, Lenoir G, Lynch H. BRCA1 and BRCA2 hereditary breast carcinoma phenotypes. *Cancer*. 1997;80(S3):543-556.
- Aaltonen L, Johns L, Järvinen H, Mecklin J-P, Houlston R. Explaining the familial colorectal cancer risk associated with mismatch repair (MMR)-deficient and MMR-stable tumors. *Clin Cancer Res.* 2007;13(1):356-361.
- Yarnall JM, Crouch DJ, Lewis CM. Incorporating non-genetic risk factors and behavioural modifications into risk prediction models for colorectal cancer. *Cancer Epidemiol.* 2013;37(3):324-329.
- Khoury MJ, Gwinn ML, Glasgow RE, Kramer BS. A population approach to precision medicine. Am J Prev Med. 2012;42(6):639-645.

- Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Bodymass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. *Lancet*. 2008;371(9612):569-578.
- Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12-19.
- US Department of Health and Human Services. National Cancer Institute. Colorectal Cancer Risk Tool. http://www.cancer.gov/ colorectalcancerrisk/tool.aspx. Accessed Aug 21, 2014.
- Freedman AN, Seminara D, Gail MH, et al. Cancer risk prediction models: a workshop on development, evaluation, and application. J Natl Cancer Inst. 2005;97(10):715-723.
- Gail MH, Brinton LA, Byar DP, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81(24):1879-1886.
- Wang W, Niendorf KB, Patel D, et al. Estimating CDKN2A carrier probability and personalizing cancer risk assessments in hereditary melanoma using MelaPRO. *Cancer Res.* 2010;70(2):552-559.
- Emery JD, Shaw K, Williams B, et al. The role of primary care in early detection and follow-up of cancer. *Nat Rev Clin Oncol.* 2014;11(1):38-48.
- Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264-269, W64.
- Walker J, Pirotta M, Licqurish S, Chiang PP-C, Emery J. Systematic review of the clinical use of risk assessment tools in primary care for cancer screening. 2014. http://www.crd.york.ac.uk/PROSPERO. Accessed Dec 2, 2013.
- The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions. London, England: The Cochrane Collaboration and John Wiley & Sons Ltd; 2008.
- Schroy PC III, Emmons K, Peters E, et al. The impact of a novel computer-based decision aid on shared decision making for colorectal cancer screening: a randomized trial. *Med Decis Making*. 2011; 31(1):93-107.
- Schroy PC III, Emmons KM, Peters E, et al. Aid-assisted decision making and colorectal cancer screening: a randomized controlled trial. Am J Prev Med. 2012;43(6):573-583.
- Rubinstein WS, Acheson LS, O'Neill SM, et al; Family Healthware Impact Trial (FHITr) Group. Clinical utility of family history for cancer screening and referral in primary care: a report from the Family Healthware Impact Trial. Genet Med. 2011;13(11):956-965.

- Ruffin MT IV, Nease DE Jr, Sen A, et al; Family History Impact Trial (FHITr) Group. Effect of preventive messages tailored to family history on health behaviors: the Family Healthware Impact Trial. Ann Fam Med. 2011;9(1):3-11.
- Wang C, Sen A, Ruffin MT IV, et al; Family Healthware[™] Impact Trial (FHITr) Group. Family history assessment: impact on disease risk perceptions. Am J Prev Med. 2012;43(4):392-398.
- Emery J, Morris H, Goodchild R, et al. The GRAIDS Trial: a cluster randomised controlled trial of computer decision support for the management of familial cancer risk in primary care. Br J Cancer. 2007;97(4):486-493.
- Campbell E, Peterkin D, Abbott R, Rogers J. Encouraging underscreened women to have cervical cancer screening: the effectiveness of a computer strategy. *Prev Med.* 1997;26(6):801-807.
- Wilson BJ, Torrance N, Mollison J, et al. Cluster randomized trial of a multifaceted primary care decision-support intervention for inherited breast cancer risk. Fam Pract. 2006;23(5):537-544.
- Emmons KM, Wong M, Puleo E, Weinstein N, Fletcher R, Colditz G. Tailored computer-based cancer risk communication: correcting colorectal cancer risk perception. J Health Commun. 2004; 9(2):127-141.
- Weinstein ND, Atwood K, Puleo E, Fletcher R, Colditz G, Emmons K. Colon cancer: risk perceptions and risk communication. J Health Commun. 2004;9(1):53-65.
- Holloway RM, Wilkinson C, Peters TJ, et al. Cluster-randomised trial of risk communication to enhance informed uptake of cervical screening. Br J Gen Pract. 2003;53(493):620-625.
- Stacey D, Légaré F, Col NF, et al. Decision aids for people facing health treatment or screening decisions. Cochrane Database Syst Rev. 2014;1:CD001431.
- Edwards A, Unigwe S, Elwyn G, Hood K. Effects of communicating individual risks in screening programmes: Cochrane systematic review. *BMJ*. 2003;327(7417):703-709.
- 35. Spiegelhalter DJ. Understanding uncertainty. Ann Fam Med. 2008; 6(3):196-197.
- Trevena LJ, Zikmund-Fisher BJ, Edwards A, et al. Presenting quantitative information about decision outcomes: a risk communication primer for patient decision aid developers. BMC Med Inform Decis Mak. 2013;13(Suppl 2):S7.
- Ait Ouakrim D, Boussioutas A, Lockett T, et al. Screening practices of unaffected people at familial risk of colorectal cancer. Cancer Prev Res (Phila). 2012;5(2):240-247.

