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Multilevel Modeling and Practice-Based 
Research

ABSTRACT
PURPOSE The health care system in the United States is inherently hierarchical. 
Patients are “nested” within physicians who in turn are “nested” within practices. 
Much of the research data gathered in practice-based research networks (PBRNs) 
also have similar patterns of nesting (clustering). When research data are nested, 
statistical approaches to the data must account for the multilevel nature of the 
data or risk errors in interpretation. We illustrate the concept of multilevel struc-
ture and provide examples with implications for practice-based research. 

METHODS We present a selection of multilevel (hierarchical) models and contrast 
them with traditional linear regression models, using an example of a simulated 
observational study to illustrate increasingly complex statistical approaches, as well 
as to explore the consequences of ignoring clustering in data. Additionally, we 
discuss other types of outcome data and designs, and the effects of clustering on 
sample size and power.

RESULTS Multilevel models demonstrate that the effects of physician-level activi-
ties may differ from clinic to clinic as well as between rural and urban settings; 
this variability would be undetected in traditional linear regression approaches. 
Study conclusions differed when the data were analyzed with multilevel methods 
compared with traditional linear regression methods. Clustered data also affected 
sample size; as the intraclass correlation increased and the patients per cluster 
increased, the required number of patients increased dramatically.

CONCLUSIONS Recognizing and accounting for multilevel structure when ana-
lyzing data from PBRN studies can lead to more accurate conclusions, as well 
as offer opportunities to explore contextual effects and differences across sites. 
Accommodating multilevel structure in planning research studies can result in 
more appropriate estimation of required sample size.

Ann Fam Med 2005;3(Suppl 1):S52-S60. DOI: 10.1370/afm.340.

INTRODUCTION

Many studies conducted in practice settings collect patient-level 
data (such as blood pressure measurements) as the dependent vari-
able. Usually, such data have a hierarchical structure, with patient-

level measures clustered (nested) within physicians and multiple physicians 
clustered within the same practice. (For defi nitions of the statistical terms 
we use in this article, see Table 1.) When analyzing such data, it is impor-
tant to recognize hierarchical/multilevel structure and account for similari-
ties among individuals within groups.1-6 Traditional statistical methods, 
such as logistic or linear regression analysis, assume that observations are 
uncorrelated; however, in the case of hierarchical/multilevel data (also called 
clustered or nested data), these assumptions are unrealistic. Individual obser-
vations (eg, patient-level blood pressure measurements) that are clustered 
within a higher-level unit share a common environment and may be more 
similar than observations from individuals in different higher-level units. In 
health care settings, patients treated by a particular clinician receive care in 
a common treatment setting that is infl uenced by clinician characteristics 
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and philosophy, and that may differ from one clinician 
to another; clinicians within the same practice share 
a common practice environment that is infl uenced by 
the practice setting and other characteristics. Ignoring 
group membership can result in erroneous conclusions, 
as demonstrated in studies from educational settings.7 
The choice of analytic methods for clustered data can 
have major implications for research by practice-based 
research networks (PBRNs), which almost always 
involves sampling patients from multiple physicians and 
clinics. Investigation of the effects of macrolevel char-
acteristics on individuals has been carried out in educa-
tional and organizational research but is relatively new 
in health research.1-9

Most statistical procedures involve understanding 
sources of variance among experimental units (eg, peo-
ple). Traditional approaches (ie, ordinary least squares 
[OLS]) such as analysis of variance and multiple linear 
regression analysis ignore dependencies within groups, 
but advances in analytic approaches (general linear 
mixed models, hierarchical linear models, random 
regression modeling) and computing software1-8,10 can 
account for the multilevel structure of the data and 
also for the random variation associated with sampling 
higher-level units, such as physicians or practices. 

In a simple 2-level model, the sources of variance 
are within-groups and between-groups. Using a PBRN 

context with patients sampled from clinics, the total 
variation in patient outcomes can be partitioned into 2 
variance components: within-clinics variance (ie, variance 
among patients in the same clinic) and between-clinics vari-
ance (ie, variance between patients in different clinics). 
When patients within groups are very similar to each 
other, we have less information than we would have 
from the same number of patients obtained in a simple 
random sample (ie, an unclustered sample). An impor-
tant measure that describes these dependencies in the 
data is the intraclass correlation coeffi cient (ICC); this 
statistic measures the extent to which individuals within 
the same group are more similar to each other than they 
are to individuals in different groups. We will explain 
this measure more fully in the next section. Issues 
around violations of distributional assumptions such as 
nonindependence of measures have long been recog-
nized, but technical advances that make such complex 
analytic methods accessible are fairly recent.8-13

In this article, we illustrate the concept of multi-
level (hierarchical) structure and analytic approaches, 
using a specifi c example from the health fi eld with 
data simulated to maximize clustering effects, and we 
contrast multilevel methods with traditional methods. 
We include an overview of modeling approaches for 
studies with continuous outcomes and hierarchical 
structure. We cover 2-level models in detail, illustrating 
the conceptual ideas behind multilevel approaches and 
contrasting them with traditional methods. The analy-
ses progress from simple to complex, with 2 traditional 
models and 5 multilevel models (also called hierarchical 
linear models [HLMs]). The models described below 
can be adapted or extended to cover most research 
designs common to PBRNs. We include an additional 
statistical model for studies with dichotomous or binary 
outcomes and briefl y discuss other applications. Finally, 
we address issues pertaining to power and sample size 
for clustered data, and give some examples. 

ILLUSTRATION OF TRADITIONAL AND 
MULTILEVEL ANALYSES FOR A PBRN STUDY
We use a hypothetical observational PBRN study and 
a simulated database to illustrate the results obtained 
with different traditional and multilevel models in a 
context with large between-clinic differences. The 
purpose of the study was to examine the effect of time 
spent by physicians giving advice to patients regard-
ing alcohol consumption on their alcohol consumption 
during 1 year. The data set consists of 500 patient-level 
observations. Patients were randomly sampled from 1 
physician in each of 5 clinics (100 patients per physi-
cian), with 3 clinics located in an urban area and 2 in a 
rural setting. The dependent variable, a continuous 

Table 1. Glossary of Terms

Multilevel/hierarchical/clustered/nested data: Data that have some 
inherent group membership (eg, students within schools, patients 
with clinics) or hierarchical structure 

Multilevel models/hierarchical linear models (HLMs): A type of 
statistical procedure belonging to the class of general linear models, 
adapted for analysis of clustered data

Analysis of variance (ANOVA): A statistical procedure used to 
compare means of a continuous outcome variable for more than 2 
groups, classifi ed by 1 or more categorical variables; for example, 
comparison of patient scores on a functional health survey for 4 non-
overlapping diagnostic groups by 2 sex categories

Analysis of covariance (ANCOVA): An extension of ANOVA in which 
the means of a continuous outcome variable are compared across 
groups, as described above, adjusting for 1 or more continuous covari-
ates; for example, comparison of patient scores on a functional health 
survey for 4 nonoverlapping diagnostic groups, adjusted for age

Fixed effects: A condition in which the levels of a factor include all 
levels of interest to the researcher (eg, sex: male or female)

Intraclass correlation coeffi cient (ICC): A measure that describes 
the extent to which individuals within the same group are more simi-
lar to each other than individuals in different groups 

Random effects: A condition in which the levels of a factor repre-
sent a random sample of all possible levels (eg, clinics)

Linear regression analysis: Simple linear regression analysis assesses 
how a continuous outcome variable (or dependent variable) changes 
per unit change in a predictor variable (or independent variable). 
Multiple linear regression analysis assesses the relationship between 1 
dependent variable and more than 1 independent variables. 

Residual variance: The remaining variance in the outcome variable 
(dependent variable) after accounting for all predictors (independent 
variables) and random effects of interest
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variable, was the number of alcohol-free weeks per 
patient during 1 year. The independent variables 
included the number of hours per year of physician 
advice each patient received (a patient-level variable) and 
clinic location, classifi ed as urban or rural (a clinic-level 
covariate). The 500 patients in this study reported an 
average of 14.61 (SD, 2.12) alcohol-free weeks during 
the past year (Table 2). Figure 1a illustrates the distri-
bution of number of alcohol-free weeks by physician 
advice over all clinics in a scatter plot.

Traditional Models
HLM Model 1: Random-Effects Analysis of Variance
The simplest multilevel model is a 1-way analysis of 
variance (ANOVA) with clinic random effects; the 
assumption is that we have sampled from a population 
of clinics (just as we typically sample from a popula-
tion of patients). In contrast to the overall mean and 
SD of number of patient alcohol-free weeks reported 
in Table 2, this model estimates the mean number of 
alcohol-free weeks (yij) for each clinic and decom-
poses the total variance in that number (yij) into the 
between-clinic (level-2) and within-clinic (level-1) 
variance components, that is, variability due to dif-
ferences in the mean number of alcohol-free weeks 
for the 5 clinics and variability in the number of alco-
hol-free weeks for patients within the same clinic. (A 
detailed description of this statistical model and the 
others we discuss is given as supplementary data in 
the Supplemental Appendix, available online only at 

http://www.annfammed.org/cgi/content/full/3/
Suppl_1/S52/DC1.)

The ICC refl ects the extent to which patients 
within the same clinic are more similar to each other 

than they are to patients in different clinics. It is the 
proportion of the total variance that is due to differences 
among clinics. ICCs are very important in planning stud-
ies and analyzing data that have hierarchical structure, 
which is common to most practice-based research. Obvi-
ously, the degree to which individuals within a practice 
are more similar than individuals in different practices 
depends on the outcome of interest, as well as other fac-
tors, and will vary from one study to another.

The results from applying the random-effects 
ANOVA model to the alcohol data set are given in 
Table 2 (see HLM Model 1). Note that the variance 
is now decomposed into a between-clinic variance 
(1.76) and a within-clinic (residual) variance (1.41). 
The estimated ICC indicates that the ratio of the 
between-clinic variance to the total variance is about 
55%, calculated as ICC = 1.76/(1.76 + 1.41), suggest-
ing that patients within clinics are more similar to each 
other than to those at other clinics. (ICC ranges from 0 
to 1 [or 0% to 100%], with higher values representing 
stronger clustering effects.)

REG Model 1: Traditional Linear Regression Model 1
The most commonly used analytic approach to our 
hypothetical problem would be the simple linear 
regression model (online Supplemental Appendix, see 
REG model 1). This model is essentially a patient-level 
model, but one can visualize it as a 2-level model with 
fi xed effects; that is, the mean number of alcohol-free 
weeks among patients without any physician advice—
intercept (�0)—is the same for all clinics, and the effect 
of physician advice on patient alcohol-free weeks, per 
unit of time spent—slope (�1)—is also the same across 
all clinics.

Figure 1. (a) Scatter plot of patient number of alcohol-free weeks during 1 year vs physician 
number of hours of advice per year. (b) Fitted line based on predictions for the whole data set 
using REG model 1 (traditional linear regression model 1).
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Table 2. Study Results Obtained With Differing Models

Description of the data

Variable Description Mean (SD) Range

yij Number of alcohol-free weeks in 1 year for patient i 
from clinic j

14.61 (2.12) 8.7-19.1

xij Total hours of physician advice per year for patient i 
from clinic j

0.56 (0.30) 0.002-1.23

wj Urbanicity: urban = 1; rural = 0 0.6 0-1

Notation

i Indexes patients within a clinic 1-100

j Indexes clinics 1-5

HLM model 1: random-effects ANOVA model

Fixed effects Estimate* SE t df Pr > t

�00 (grand mean) 14.61 0.79 18.46 499 .000

Random effects Estimate* Pr(H0: � = 0)    

�00 (between-clinic variance) 1.76 .000

�2 (residual variance) 1.41

REG model 1: traditional linear regression model 1†

Fixed effects Estimate* SE t  Pr > t

�0 (�10) – slope 1.31 1.23 1.07 .345

�1 (�00) – intercept 13.87 1.19 11.69 .000

�2 (residual variance) 2.1

HLM model 2: random-intercept model

Fixed effects Estimate* SE t df Pr > t

�10 (slope) 2.38 1.05 2.26 498 .024

�00 (average intercept) 13.27 1.30 10.24 4 .000

Random effects Estimate* Pr(H0: � = 0)    

�00 (variability in clinic intercepts) 3.47 0.000

�2 (residual variance) 1.65

HLM model 3: random-coeffi cients model

Fixed effects Estimate* SE t df Pr > t

�10 (average slope) 2.96 0.89 3.31 4 .040

�00 (average intercept) 12.80 1.32 9.74 4 .000

Random effects Estimate* Pr(H0: � = 0)    

�00 (variability in intercepts across clinics) 10.71 .000

�11 (variability in slopes across clinics) 4.74 .000

�01 (covariance between intercept and slope) –7.10

�2 (residual variance) 1.18

HLM model 4: intercept as outcome model

Fixed effects Estimate* SE t df Pr > t

�10 (slope) 2.34 0.23 10.03 497 .000

�01 (difference between urban and rural 
intercept)

–3.26 0.51 –6.36 3 .000

�00 (rural intercept) 15.25 0.42 36.67 3 .000

Random effects Estimate* Pr(H0: � = 0)    

�00 (variability in clinic intercepts after 
adjusting for urban or rural location)

0.55 .000

�2 (residual variance) 1.28 Table 2 continues
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The results from applying this model to the alcohol 
data set are shown in Table 2 (see REG model 1). These 
results indicate that, on average, 1 additional hour of 
physician advice is associated with an increase of 1.31 
alcohol-free weeks; however, this increase does not 
reach statistical signifi cance at the 5% level, so these 
results would lead us to conclude that physician advice 
does not impact patient alcohol consumption. The 
residual variance in number of alcohol-free weeks after 
adjusting for hours of advice (�2) is about 2.1. Figure 1b 
shows the predicted regression line for the entire data 
set based on this model. Robust regression methods, 
which involve only a slight modifi cation of traditional 
linear regression analysis, address some of the problems 
described above and can be used as sensitivity analyses 
when the emphasis is primarily on fi xed effects.10 

Careful exploration of the data reveals that the mean 
number of alcohol-free weeks without any physician advice—inter-
cept (b0)—may be different in different clinics (Figure 2a). This 
baseline heterogeneity across clinics is illustrated in the 
fi gure, which shows the traditional model 1 fi t individu-
ally for 2 clinics. Further exploration of the data reveals 
that the effect of physician advice—slope (b1)—may also vary 
across clinics (Figure 2b), suggesting that physicians’ 
advice (per unit of time spent) is more effective at some 

clinics than at others. This fi gure illustrates the model 
fi t of the traditional model 1 in a third clinic, which 
suggests that besides differences in mean number of 
alcohol-free weeks without any physician advice (varia-
tion in intercepts), there are also differences in the 
effect of hours of physician advice (variation in slopes) 
on patient number of alcohol-free weeks across clinics.

Multilevel Models
Multilevel models provide a way to account for variation 
in intercepts and slopes across clinics (level-2 units) with-
out having to apply the traditional model 1 separately for 
each clinic. The random-intercept model, which allows 
for variation in intercepts across clinics, is a simple model 
in the series of HLMs, whereas a more advanced model, 
the random-coeffi cients model, accounts for variation in 
both intercepts and slopes across clinics. These models 
are described below and in the online Supplemental 
Appendix. Researchers can use a variety of statistical pro-
grams to analyze multilevel data:

• HLM (Raudenbush, Bryk, Cheong, and Congdon; 
available at http://www.ssicentral.com/hlm/hlm.htm)

• MLWIN (Centre for Multilevel Modelling, Insti-
tute of Education, London, England; available at http://
multilevel.ioe.ac.uk/index.html)

Table 2 continued

HLM model 5: intercept and slope as outcomes model

Fixed effects Estimate* SE t df Pr > t

�11 (difference in slope between urban and 
rural areas)

3.97 0.50 7.94 3 .000

�10 (average slope in rural areas) 0.67 0.44 1.54 3 .220

�01 (difference in intercepts between urban 
and rural areas)

–5.53 0.83 –6.67 3 .000

�00 (average intercept in rural areas) 16.15 0.60 26.77 3 .000

Random effects Estimate* Pr(H0: � = 0)    

�00 (variability in intercepts after adjusting 
for urbanicity)

1.51 .000

�11 (variability in slopes after adjusting for 
urbanicity)

0.28 .092

�01 (covariance between intercept and slope) –0.44

�2
 (residual variance) 1.39

REG model 2: traditional regression model 2

Fixed effects Estimate* SE t  Pr > t

Slope 

�11 (urban – rural) 1.48 1.13 1.30 .226

�10 (rural) 0.83 0.49 1.71 .163

Intercept

�01 (urban – rural) –4.04 1.01 –4.01 .016

�00 (rural) 16.05 0.67 23.94 .000

HLM = hierarchical linear model; H0 = null hypothesis; ANOVA = analysis of variance; REG = regression; Pr = probability.

* Estimated number of alcohol-free weeks during the past year. 
† Residual variance = 2.0813. 
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• SAS – Proc Mixed (SAS Institute, Cary, NC; 
available at http://www.sas.com)

• WinBUGS (MRC Biostatistics Unit, Cambridge, 
United Kingdom; available at http://www.mrc-bsu.cam.
ac.uk/bugs/welcome.shtml)

HLM Model 2: Random-Intercept Model
The random-intercept model accounts for the varia-
tion across clinics in the mean number of alcohol-free 
weeks without any physician advice (online Supple-
mental Appendix, see HLM model 2); however, the 
effect of physician advice (per unit of time spent) is still con-
strained to be the same for all clinics (ie, the slope is fi xed). This 
model is equivalent to a 1-way analysis of covariance 
(ANCOVA) with random effects (intercepts). 

Statistical packages for multilevel modeling allow 
for estimation of all parameters in this model, including 
the random effects, and enable us to test whether there 
is signifi cant variation among clinics, after adjusting for 
patient- and clinic-level covariates. This test helps us to 
determine whether it is necessary to retain a clinic-level 
random effect. The results from applying the random-
intercept model to the alcohol data set are shown in 
Table 2 (see HLM model 2). The ICC (ratio of the 
between to the total variance) is about 68%, indicating 
that patients within clinics are very similar to each other 
compared with patients in different clinics. Conse-
quently, after accounting for differences among clinics, 
the estimate for the residual variance (�2) is reduced to 
1.65. Moreover, the estimate of the effect of physician 
advice, per unit of time spent, on patient alcohol-free 
weeks—slope (�10)—is now 2.38 alcohol-free weeks 
per unit time spent and is statistically signifi cant at the 
5% level. From these results, we would conclude that 
time spent by physicians advising patients on alcohol 
consumption does have an effect on their alcohol con-

sumption (it is also possible to gain in precision but lose 
in signifi cance). In this case, wherein between-clinic dif-
ferences are large, the gain in effi ciency with the HLM 
estimator provides 2 advantages over the traditional 
models: (1) it can affect policy decisions by infl uencing 
the signifi cance of the estimates, and (2) it reduces the 
instability in point estimates of parameters because of 
the tighter error variance. 

HLM Model 3: Random-Coeffi cients Model
In the random-coeffi cients model, we allow both the 
intercept and the slope to be specifi ed as random vari-
ables (Figure 2b showing individual regressions for each 
clinic), thus accounting for variability in both the mean 
number of alcohol-free weeks without any physician 
advice (intercepts) and the effects of physician advice 
(slopes) across clinics. As a result, if clinics were ana-
lyzed in separate linear regression models, estimates for 
intercepts and slopes could be quite different from one 
clinic to the next. These differences are ignored when 
data from different clinics are combined in a simple 
linear regression model or even in a random-intercepts 
model, and ignoring them can result in incorrect con-
clusions, such as erroneously concluding that physician 
advice does not affect patient alcohol consumption. 
(Note: It is possible to estimate clinic differences using a 
combination of indicator variables and interaction effects 
in traditional linear regression, but this practice is not 
recommended because the assumption of independence 
is still violated, power is severely hampered, and too 
many terms may be required for the sample size.)

The online Supplemental Appendix (see HLM 
model 3) gives details of the random-coeffi cients 
model, and Table 2 (see HLM model 3) shows the 
results obtained when this model is applied to the 
alcohol data set. We can see that there is signifi cant 

Figure 2. Fitted lines based on predictions for individual clinics using REG model 1 (traditional linear 
regression model 1). (a) Lines for 2 clinics. (b) Lines for 3 clinics.
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variability in the mean number of alcohol-free weeks 
without any physician advice across clinics, as well as 
variability in the effect of physician advice on alcohol 
consumption across clinics (reject the null of H0: � = 
0). The average slope in the entire study population is 
estimated to be 2.96 and is statistically signifi cant at 
the 5% level. Also, the covariance parameter estimate, 
which describes the relationship between the intercepts 
and slopes, is negative (�01 = –7.10). It is therefore pos-
sible that physician advice in clinics with a higher base-
line number of alcohol-free weeks may have less impact 
than in clinics with a lower one (a possibility that 
should be tested more rigorously to determine whether 
it is a real clinical effect).

More-Complex Models
In the previous HLMs, we have allowed the intercept 
and the slopes to be random (vary across clinics) in 
order to account for the variability in mean number 
of alcohol-free weeks without physician advice and 
the variability in the effects of physician advice across 
clinics. The next logical step is to try to explain these 
differences among clinics using characteristics of the 
level-2 units (clinics).

HLM Model 4: Intercept as Outcome Model
With the intercept as outcome model, we want to see 
if variability in the mean number of alcohol-free weeks 
without any physician advice across clinics (intercepts) 
can be explained by clinic-level characteristics such as 
urban or rural location of the clinic (online Supplemental 
Appendix, see HLM model 4). Like HLM model 2, this 
model assumes that the effect of physician advice on 
alcohol consumption (slope) is the same across clinics. 

The results for the intercept as outcome model are 
given in Table 2 (see HLM model 4). The results show 
that the mean number of alcohol-free weeks without 
any physician advice (ie, xij = 0) is about 15.25 for 
patients in rural clinics, whereas it is about 3.26 weeks 
lower for patients in urban clinics. This difference is 
statistically signifi cant at the 5% level. Moreover, urba-
nicity of the clinic explains about 84% of the variance 
in the intercept. This observation suggests that a sub-
stantial amount of the variability in baseline number of 
alcohol-free weeks across clinics can be accounted for 
by urban or rural location; nevertheless, the variability 
in the intercepts is still signifi cant even after adjusting 
for clinic location.

HLM Model 5: Intercept and Slope 
as Outcomes Model
In the intercept and slope as outcomes model, we try 
to explain both the variability in the baseline number 
of alcohol-free weeks (intercepts) across clinics and the 

variability in the effect of physician advice on alcohol 
consumption across clinics (slope) by clinic- level char-
acteristics such as urban vs rural location of the clinic (online 
Supplemental Appendix, see HLM model 5). 

Study results obtained when the intercept and slope 
as outcomes model is applied to the alcohol data set are 
given in Table 2 (see HLM model 5). The results show 
that after adjusting for urbanicity of clinics, the remain-
ing variability in slopes is not statistically signifi cant 
(P = .092) at the 5% level (although it is signifi cant at 
the 10% level). The researcher may decide to retain 
the random slope or may choose to specify the slope 
as nonrandomly varying. The results also show that the 
effect of physician advice on alcohol consumption is 
nonsignifi cant in rural clinics (0.67 alcohol-free weeks 
per hour of physician advice, P = .220), but there is a 
signifi cant difference in this effect between urban and 
rural clinics (difference of 3.97 alcohol-free weeks per 
hour of physician advice, P = .000). For urban clinics, 
an additional hour of physician advice is associated 
with an increase of 4.64 (ie, 3.97 + 0.67) additional 
alcohol-free weeks on average.

REG Model 2: Traditional Regression Model 2
In a traditional patient-level model, a main effect for 
physician advice, a main effect for urbanicity, plus an 
interaction term (physician advice � urbanicity) would 
be used to study how urban vs rural location moderates 
the effect of physician advice on alcohol-free weeks 
(online Supplemental Appendix, see REG model 2). This 
approach allows the intercept and the slope to vary for 
urban and rural locations but is problematic if there is 
signifi cant variability among intercepts and slopes of 
clinics within location type. The results for the tradi-
tional regression model 2 are shown in Table 2 (see REG 
model 2). Unlike the intercept and slope as outcomes 
model above (HLM model 5), this model shows that 
the difference in the effect of physician advice on alco-
hol consumption between the urban and rural clinics is 
nonsignifi cant. Had we used this model, we would have 
concluded that physician advice was ineffective for rural 
clinics and that the effect of physician advice in urban 
clinics did not differ from that in rural clinics.

How Important Are Modeling Decisions 
in PBRN Studies?
Can different analytic approaches affect an investigator’s 
conclusions about the outcome? The results in Table 2 
show that decisions about the potential effectiveness 
of physician time spent advising patients on alcohol 
consumption may vary with the choice of analytic 
approach. Had the researchers ignored the hierarchi-
cal structure of the data and used traditional analytic 
approaches, they would have erroneously concluded 
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that physician advice had little or no infl uence on 
patient alcohol consumption behavior. On the other 
hand, all the HLMs that assess the relationship between 
physician time advising patients on alcohol consump-
tion and patient behavior lead to the conclusion that 
physician advice is effective, at least in some settings. 
An important limitation of the hypothetical study 
should be mentioned at this point. Because variability 
among clinic intercepts and slopes is estimated using 
clinic-level information, ideally, the number of level-2 
units (clinics) should be much greater than 5. Several 
of the references cited below include discussions about 
how many level-2 units should be sampled.1-5 

APPLICATIONS TO OTHER FORMS OF DATA 
AND INTERVENTIONS
Randomized Controlled Trials
The variety of HLMs described above can be read-
ily extended to study different types of interventions 
and data that have some sort of group structure, such 
as clustering of patients within clinics. In interven-
tion studies that are carried out in PBRNs, it is often 
necessary to randomize at the clinic level to avoid 
contamination and minimize diffi culties in implement-
ing interventions. This setup naturally leads to the 
use of multilevel modeling. For example, suppose we 
want to test an intervention to assist patients in their 
daily management of type 2 diabetes. The intervention 
might involve patient education and support from their 
primary care clinicians and be implemented at the prac-
tice level in 20 practices, with 10 randomized to the 
intervention and 10 to provision of usual care. We wish 
to control for patient characteristics, so patient-level 
covariates will be included in the level-1 model. We 
would allow the intercept and slope to vary randomly 
across practices and then try to explain this variability 
using the intervention variable as a level-2 character-
istic (as in HLM model 5, the intercept and slope as 
outcomes model). 

Longitudinal Models
Longitudinal models, in which individuals are observed 
at multiple instances over time, are actually another 
kind of hierarchical structure, in which level-1 repre-
sents the individual’s observations over time, and the 
level-2 units are the patients themselves. These models 
are discussed in detail elsewhere.6,7 

Dichotomous Dependent Variables
Other forms of outcome data can be analyzed using 
hierarchical generalized linear models (HGLMs), also called 
generalized linear mixed models (online Supplemen-
tal Appendix, see HGLM model). For example, many 

health outcomes are dichotomous or binary rather than 
continuous (eg, a patient was tested for a particular 
condition, a patient achieved a target hemoglobin A1c 
level). Suppose in the example above, the intervention 
for diabetes included a physician education compo-
nent designed to encourage primary care physicians 
to screen for hyperlipidemia among diabetic patients. 
The patient-level outcome is whether the patient was 
screened (yes or no) within a designated time period 
after the intervention. We want to control for patient 
characteristics and test whether the intervention is 
effective at encouraging physicians to screen their dia-
betic patients. In the traditional approach to this analy-
sis, we might use a logistic regression model; however, 
the assumption of independence of observations is 
violated because of the clustering of patients within 
clinics. One alternative approach (there are other pos-
sible approaches13) adapts the hierarchical linear model 
by using a link function at level 1 that is appropriate to 
the distribution of the outcome variable.5 

Higher-Level Data Structure
Finally, it is straightforward to extend a 2-level hierar-
chy to a hierarchy of 3 or more levels. Interested read-
ers are referred to Bryk and Raudenbush1 for a detailed 
description of these models. A number of useful statisti-
cal references are given below.8-12

OTHER ISSUES
Measurement and Variable Specifi cation 
in Multilevel Models
Characteristics of patients, physicians, and practices 
constitute a set of interrelated factors that can be concep-
tualized and measured at different levels of a hierarchical 
system. In multilevel modeling, researchers must pay 
careful attention to the specifi cation of variables, with 
measurement at the appropriate level. Some measurement 
issues that are specifi c to multilevel models differ from 
those of traditional psychometric approaches, focusing 
instead on level of measurement, ways of operationalizing 
higher-level constructs, and empirical support for types 
of composition processes for aggregating lower-level data 
to form macrolevel variables. Variables that provide infor-
mation about higher-level units (eg, clinicians or settings) 
can be measured directly or created from measures aggre-
gated from lower-level units (eg, patients). Researchers 
must exercise caution, however, in avoiding aggregation 
bias when creating variables and in interpreting results 
because meaning and functional relationships in multi-
level models may be different at lower and higher levels 
of the hierarchy.1 In the example on counseling about 
alcohol consumption, the effect of average (aggregated) 
time spent on such advice in a clinic may refl ect a clinic’s 
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awareness of the importance of health counseling or a 
general emphasis on alcohol (ie, a contextual effect) as 
opposed to the effects of individual physician time spent 
counseling individual patients. 

Power
In the data analysis on alcohol consumption, the ICC 
is quite high, but even a relatively small ICC can have 
adverse effects on power, requiring a larger sample 
size. Using the Donner et al formula8 for the vari-
ance infl ation factor (VIF), which is also referred to as 
the design effect,4 we can determine adjusted sample 
size requirements in the presence of clustering. If an 
unclustered design for a randomized controlled trial 
requires n patients per group to detect the desired 
effect size with adequate power (eg, 80% power) and 
� = .05, then the VIF allows us to adjust the sample 
size for a positive ICC. If we sample m patients per 
cluster clinic, then we must infl ate the sample size by 
a factor of (1 + (m − 1)ICC). Table 3 gives a range 
of sample size corrections for cluster designs with 
a starting sample size of 100 patients per treatment 
condition and varying numbers of patients per cluster 
(clinic) and ICC. It is readily apparent from this table 
that sample size requirements for clustered designs 
can be drastically affected by large cluster sizes and 
increasing ICCs. 

CONCLUSIONS AND RECOMMENDATIONS
PBRN research generally involves sampling patients from 
multiple practice sites and often involves group random-
ization approaches to intervention studies. Data resulting 

from such approaches are inherently 
hierarchical. Recognizing the need for 
adjustments to study design and data 
analysis in the presence of clustering 
can allow PBRN investigators to arrive 
at more accurate conclusions and to 
more appropriately estimate sample 
size requirements. Methodologic 
advances also offer rich opportunities 
to explore contextual effects by using 
models that incorporate characteris-
tics of clinicians and clinics as well as 
those of patients. 

To read or post commentaries in response 
to this article, see it online at http://www.
annfammed.org/cgi/content/full/3/Suppl_1/S52. 
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Table 3. Examples of Sample Sizes for Group-Randomized Designs

Original 
Sample Size*

No. of 
Clinics

No. of 
Patients 
per Clinic

(m) ICC VIF
Adjusted 

Sample Size*

100 25   4 .00 1.0 100

100 29   4 .05 1.15 115

100 33   4 .10 1.30 130

100 10 10 .00 1.0 100

100 15 10 .05 1.45 145

100 19 10 .10 1.90 190

100   5 20 .00 1.0 100

100 10 20 .05 1.95 195

100 15 20 .10 2.9 290

100   4 25 .00 1.0 100

100   9 25 .05 2.2 220

100 14 25 .10 3.4 340

m = designator for number of patients per cluster to be used in calculations; ICC = intraclass correlation 
coeffi cient; VIF = variance infl ation factor. 

*Number of patients per treatment group.  


