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SUPPLEMENTAL APPENDIX 1: PRISMA-ScR 

Preferred Reporting Items for Systematic reviews and Meta-Analyses extension 
for Scoping Reviews (PRISMA-ScR) Checklist 

 
SECTION ITEM PRISMA-ScR CHECKLIST ITEM REPORTED ON 

PAGE # 
TITLE 

Title 1 Identify the report as a scoping review. 1 
ABSTRACT 

Structured 
summary 2 

Provide a structured summary that includes (as 
applicable): background, objectives, eligibility 
criteria, sources of evidence, charting methods, 
results, and conclusions that relate to the review 
questions and objectives. 

2 

INTRODUCTION 

Rationale 3 

Describe the rationale for the review in the context 
of what is already known. Explain why the review 
questions/objectives lend themselves to a scoping 
review approach. 

1-2 

Objectives 4 

Provide an explicit statement of the questions and 
objectives being addressed with reference to their 
key elements (e.g., population or participants, 
concepts, and context) or other relevant key 
elements used to conceptualize the review 
questions and/or objectives. 

2 

METHODS 

Protocol and 
registration 5 

Indicate whether a review protocol exists; state if 
and where it can be accessed (e.g., a Web 
address); and if available, provide registration 
information, including the registration number. 

2 

Eligibility criteria 6 

Specify characteristics of the sources of evidence 
used as eligibility criteria (e.g., years considered, 
language, and publication status), and provide a 
rationale. 

2,3 

Information 
sources* 7 

Describe all information sources in the search 
(e.g., databases with dates of coverage and 
contact with authors to identify additional 
sources), as well as the date the most recent 
search was executed. 

2 

Search 8 
Present the full electronic search strategy for at 
least 1 database, including any limits used, such 
that it could be repeated. 

Supplemental 
Appendix 2 

Selection of 
sources of 
evidence† 

9 
State the process for selecting sources of 
evidence (i.e., screening and eligibility) included in 
the scoping review. 

2,3 

Data charting 
process‡ 10 

Describe the methods of charting data from the 
included sources of evidence (e.g., calibrated 
forms or forms that have been tested by the team 
before their use, and whether data charting was 
done independently or in duplicate) and any 

3 
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SECTION ITEM PRISMA-ScR CHECKLIST ITEM REPORTED ON 
PAGE # 

processes for obtaining and confirming data from 
investigators. 

Data items 11 
List and define all variables for which data were 
sought and any assumptions and simplifications 
made. 

3, Supplemental 
Appendix 3 

Critical appraisal 
of individual 
sources of 
evidence§ 

12 

If done, provide a rationale for conducting a 
critical appraisal of included sources of evidence; 
describe the methods used and how this 
information was used in any data synthesis (if 
appropriate). 

NA 

Synthesis of 
results 13 Describe the methods of handling and 

summarizing the data that were charted. 3 

RESULTS 
Selection of 
sources of 
evidence 

14 

Give numbers of sources of evidence screened, 
assessed for eligibility, and included in the review, 
with reasons for exclusions at each stage, ideally 
using a flow diagram. 

3, Figure 1 

Characteristics of 
sources of 
evidence 

15 
For each source of evidence, present 
characteristics for which data were charted and 
provide the citations. 

3-5; Table 1; 
Figures 2 – 4, 
Supplemental 
Appendix 3 

Critical appraisal 
within sources of 
evidence 

16 If done, present data on critical appraisal of 
included sources of evidence (see item 12). NA 

Results of 
individual sources 
of evidence 

17 
For each included source of evidence, present the 
relevant data that were charted that relate to the 
review questions and objectives. 

NA (too many 
studies to do in a 
meaningfully 
interpretable way) 

Synthesis of 
results 18 Summarize and/or present the charting results as 

they relate to the review questions and objectives. 

3-5; Table 1; 
Figures 2 – 4; 
Supplemental 
Appendix 3 

DISCUSSION 

Summary of 
evidence 19 

Summarize the main results (including an 
overview of concepts, themes, and types of 
evidence available), link to the review questions 
and objectives, and consider the relevance to key 
groups. 

5,6 

Limitations 20 Discuss the limitations of the scoping review 
process. 6 

Conclusions 21 
Provide a general interpretation of the results with 
respect to the review questions and objectives, as 
well as potential implications and/or next steps. 

5,6,7 

FUNDING 

Funding 22 

Describe sources of funding for the included 
sources of evidence, as well as sources of funding 
for the scoping review. Describe the role of the 
funders of the scoping review. 

7 

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses 
extension for Scoping Reviews. 
* Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media 
platforms, and Web sites. 
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† A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., 
quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping 
review as opposed to only studies. This is not to be confused with information sources (see first footnote). 
‡ The frameworks by Arksey and O’Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the 
process of data extraction in a scoping review as data charting. 
§ The process of systematically examining research evidence to assess its validity, results, and relevance before 
using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable 
to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used 
in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document). 
 

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): 

Checklist and Explanation. Ann Intern Med. ;169:467–473. doi: 10.7326/M18-0850 
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SUPPLEMENTAL APPENDIX 2: SEARCH STRATEGIES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1:  Development of search strategies 

Identify documents to inform search strategy 
• PubMed Search using Medical Subject Headings for AI and PC (n=88). 
• Harvest subject headings and keywords from relevant documents (n=7). 

Develop initial search strategy 
• Use harvested terms to inform comprehensive search strategy in 

conjunction with topic area knowledge and discussion amongst 
reviewers. 

Pilot test search strategy in health and computer science databases 
• Revise strategy in an iterative fashion to balance comprehensiveness 

with feasibility. 
• For example, due to subject-area terminology differences, 

certain terms were used exclusively in health sciences or in 
computer science databases (e.g. “knowledge base”).  

Test search strategy comprehensiveness 
• All relevant documents from the initial search were re-identified using 

the final search strategy in Medline-OVID.  
• Final revisions were made as necessary for remaining databases.  
• Assessed amount of literature missed by restricting to English language.  
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Databases used:   

i. Medline-OVID  
ii. EMBASE  

iii. Cinahl  
iv. Cochrane Library  
v. Web of Science   

vi. Scopus   
vii. IEEE Xplore  

viii. ACM Digital Library  
ix. MathSciNet  
x. AAAI (https://aaai.org/ocs/index.php/index/index/search/advanced)  

xi. arXiv 
 

 
Database Searching Notes  

The databases listed above have different search capabilities in terms of keywords and subject headings. We used the most rigorous 
approach possible for each database, whereby approaches can be broken down into three general categories:  
 

1) Search with keywords and subject headings:  

• Medline-OVID 

o Keywords were used to search title, abstract, and author keywords. 
• Embase 

o Keywords were used to search title, abstract, and author keywords. 
• Cinahl 

o Keywords were used to search title and abstract.  
• Cochrane  

o Keywords were used to search title, abstract, and keywords.  
• ACM Digital Library  

o No wildcard (*), use full spellings.  
o Only used artificial intelligence subject headings (CCS); health related headings are too broad and captured too many 

irrelevant documents to maintain review feasibility. 
o Search “The ACM Full-Text Collection.”  
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Search strategy for category 1:  
i) Keywords and subject headings for artificial intelligence concept were searched with OR. 
ii) Keywords and subject headings for primary care concept were searched with OR.  
iii) i) and ii) were combined with AND.    

 

 
2) Search with keywords only: 

• Web of Science  
o Keywords in “Topic” field were used to search title, abstract, author keywords, and keywords plus. 

• Scopus  
o Keywords were used to search title, abstract, and keywords. 

• MathSciNet 
o Keywords in ‘Anywhere’ field were used to search author, author/related, title, review text, journal, institution code, 

series, MSC primary/secondary, MSC primary, MR number, and reviewer. 
• arXiv 

o arXiv API was accessed using python. 
o Keywords in ‘all’ field were used to search title, author, abstract, comment, journal reference, subject category, report 

number, and id.  
 
Search strategy for category 2:  

i) Keywords for artificial intelligence concept were searched with OR. 
ii) Keywords for primary care concept were searched with OR.  
iii) i) and ii) were combined with AND.    

 
 

3) Search with limited keywords only:  

• IEEE Xplore 
o Limited to 12 keywords. 
o Keywords were used to search metadata (abstract, index terms, bibliographic citation data.) 
o No wildcard (*) within phrase searching, so we wrote out the 12 terms in full. 

• AAAI 
o Limited to 254 characters.  
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o Used only primary care concept keywords because redundant to search artificial intelligence terms in artificial 
intelligence proceedings.  

o Case sensitive; spelled out keywords that are most important and most likely to be capitalized differentially by different 
authors using upper and lower case first letter(s) and spelled out less important or less capitalization-ambiguous 
keywords using only lower case. 

 
Search strategy for IEEE Xplore:  

i) Keywords for artificial intelligence concept were searched with OR. 
ii) Keywords for primary care concept were searched with OR.  
iii) i) and ii) were combined with AND.    

 
Search strategy for AAAI:  

i) Keywords for primary care concept were searched with OR.  
 
 
Search Terms for Health Sciences Databases.  

Concept Key Words 

 

(syntax for Medline-
OVID and 
EMBASE)  

Medline-Ovid EMBASE CINAHL 

 

 

Cochrane Library 

 

(default explodes 
subject headings) 

Artificial 

Intelligence  

(Artificial 
Intelligence OR 
Computer Heuristics 
OR Expert System* 
OR Fuzzy Logic OR 
Machine Learning 
OR Support Vector 
Machine OR 
Natural Language 
Processing OR 
Neural Network* 
OR Robotic* OR 

exp Artificial 
Intelligence/ OR Data 
Mining/ OR exp 
Decision Making, 
Computer Assisted/ 
OR exp Decision 
Support Techniques/ 
 
 
 
 
 

Exp Artificial 
Intelligence/ OR 
Expert System/ OR 
Fuzzy Logic/ OR Exp 
Machine Learning/ OR 
Natural Language 
Processing/ OR 
Robotics/ OR Computer 
Assisted Diagnosis/ OR 
Exp Computer Assisted 
Therapy/ OR Knowledge 
Base/ OR Knowledge 

 (MH “Artificial 
Intelligence+”) 
OR (MH “Data 
Mining”) OR 
(MH "Decision 
Making, 
Computer 
Assisted") OR 
(MH "Diagnosis, 
Computer 
Assisted+") OR 
(MH "Therapy, 

[mh “Artificial 
Intelligence”]  
OR [mh “Decision 
Making, Computer 
Assisted”] OR [mh 
“Decision Support 
Techniques”] 
OR [mh “Data 
Mining” not exploded; 
separate line] 
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Deep Learning OR 
Knowledge 
Representation OR 
Automated 
Reasoning OR 
Computer Vision 
OR Data Mining 
OR Bayesian 
Network* OR 
Bayes 
Network*).ti,ab,kw. 
 

Base/ OR Ontology 
Development/  

Computer 
Assisted+") OR 
(MH "Decision 
Support 
Techniques+") 
 

Primary 

Care 

(Primary Care OR 
Primary Health Care 
OR Primary 
Healthcare OR 
Primary Medical 
Care OR Family 
Medicine OR 
Family Healthcare 
OR Family Health 
Care OR Family 
Physician* OR 
Family Pract* OR  
General 
Practitioner* OR 
Nurse Practitioner* 
OR Family Doctor* 
OR Family Nurse* 
OR Community 
Medicine OR 
Community Pract* 

Primary Health Care/ 
OR Physicians, 
Family/ OR 
Physicians, Primary 
Care/ OR General 
Practitioners/ OR exp 
General Practice/ OR 
Community Medicine/ 
OR Nurse 
Practitioners/ OR 
Family Nurse 
Practitioners/ OR 
Primary Care 
Nursing/ OR Nurses, 
Community Health/ 
OR Ambulatory Care/  
 
 

Exp Primary Health 
Care/ OR Family 
Medicine/ OR 
Community Medicine/ 
OR Family Health/ OR 
General Practitioner/ OR 
General Practice/ OR 
Ambulatory Care/ OR 
Ambulatory Care 
Nursing/ OR Nurse 
Practitioner/ OR Family 
Nurse Practitioner/ 

(MH “Primary 
Health Care”) 
OR (MH 
“Physicians, 
Family”) OR 
(MH “Family 
Practice”) OR 
(MH 
“Community 
Medicine”) OR 
(MH 
“Community 
Health Centers”) 
OR (MH “Nurse 
Practitioners”) 
OR (MH 
“Family Nurse 
Practitioners”) 
OR (MH 
“Ambulatory 
Care”) OR (MH 

[mh “Primary Health 
Care”] OR [mh 
“Physicians, Primary 
Care”] OR [mh 
“Primary Care 
Nursing”] OR [mh 
“Physicians, Family”] 
OR [mh “General 
Practitioners”] OR [mh 
“General Practice”] 
OR [mh “Community 
Medicine”] OR [mh 
“Nurse Practitioners”] 
OR [mh “Family 
Nurse Practitioners”] 
OR [mh “Nurses, 
Community Health”] 
OR [mh “Ambulatory 
Care”] 
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OR Ambulatory 
Care).ti,ab,kw. 
 
 

“Ambulatory 
Care Nursing”) 
OR (MH 
“Ambulatory 
Care Facilities”) 
 

 
Note: Keywords from the above (“health sciences”) databases were used for Scopus and Web of Science. 
 
 
 
Search Terms for Computer Science Databases 

Concept Key Words 

(MathSciNet syntax) 
ACM Digital Library 

Artificial 

Intelligence  

("Artificial Intelligence" OR 
"Computer Heuristics" OR "Expert 
System*" OR "Fuzzy Logic" OR 
"Knowledge Base" OR "Machine 
Learning" OR "Natural Language 
Processing" OR "Support Vector 
Machine" OR "Neural Network*" OR 
"Robotic*" OR "Deep Learning" OR 
"Knowledge Representation" OR 
"Automated Reasoning" OR 
"Computer Vision" OR "Data 
Mining" OR "Bayesian Network*" 
OR "Bayes Network*")  

“Artificial Intelligence” “Robotic Planning” 
“Distributed Artificial Intelligence” “Computer 
Vision” “Machine Learning” “Machine Learning 
Algorithms” 
 

Primary 

Care 

("Primary Care" OR "Primary Health 
Care" OR "Primary Healthcare" OR 
"Primary Medical Care" OR "Family 
Medicine" OR "Family Healthcare" 
OR "Family Health Care" OR 
"Family Physician*" OR "Family 

None.  
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Pract*" OR "General Practitioner*" 
OR "Nurse Practitioner*" OR 
"Family Doctor*" OR "Family 
Nurse*" OR "Community Medicine" 
OR “Community Pract*” OR 
"Ambulatory Care") 

 

Additional Search Strings:  

CINAHL & Cochrane Library keyword syntax (all Table 1 keywords) to be combined with subject headings: 

(“Artificial Intelligence” OR “Computer Heuristics” OR “Expert System*” OR “Fuzzy Logic” OR “Machine Learning” OR “Support 
Vector Machine” OR “Natural Language Processing” OR “Neural Network*” OR “Robotic*” OR “Deep Learning” OR “Knowledge 
Representation” OR “Automated Reasoning” OR “Computer Vision” OR “Data Mining” OR “Bayesian Network*” OR “Bayes 
Network*”) 
 
(“Primary Care” OR “Primary Health Care” OR “Primary Healthcare” OR “Primary Medical Care” OR “Family Medicine” OR 
“Family Healthcare” OR “Family Health Care” OR “Family Physician*” OR “Family Pract*” OR “General Practitioner*” OR “Nurse 
Practitioner*” OR “Family Doctor*” OR “Family Nurse*” OR “Community Medicine” OR “Community Pract*” OR “Ambulatory 
Care”) 
 

Web of Science syntax (use advanced search page; all Table 1 keywords):  

Line 1: TS=(“Artificial Intelligence” OR “Computer Heuristics” OR “Expert System*” OR “Fuzzy Logic” OR “Machine Learning” 
OR “Support Vector Machine” OR “Natural Language Processing” OR “Neural Network*” OR “Robotic*” OR “Deep Learning” OR 
“Knowledge Representation” OR “Automated Reasoning” OR “Computer Vision” OR “Data Mining” OR “Bayesian Network*” OR 
“Bayes Network*”) AND LANGUAGE: (English) 
 
Line 2: TS=(“Primary Care” OR “Primary Health Care” OR “Primary Healthcare” OR “Primary Medical Care” OR “Family 
Medicine” OR “Family Healthcare” OR “Family Health Care” OR “Family Physician*” OR “Family Pract*” OR “General 
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Practitioner*” OR “Nurse Practitioner*” OR “Family Doctor*” OR “Family Nurse*” OR “Community Medicine” OR “Community 
Pract*” OR “Ambulatory Care”) AND LANGUAGE: (English) 
  
Line 3: #2 AND #1 
 

Scopus search syntax (all Table 1 keywords):  

(TITLE-ABS-KEY ((“Artificial Intelligence” OR “Computer Heuristics” OR “Expert System*” OR “Fuzzy Logic” OR “Machine 
Learning” OR “Support Vector Machine” OR “Natural Language Processing” OR “Neural Network*” OR “Robotic*” OR “Deep 
Learning” OR “Knowledge Representation” OR “Automated Reasoning” OR “Computer Vision” OR “Data Mining” OR “Bayesian 
Network*” OR “Bayes Network*”) AND (“Primary Care” OR “Primary Health Care” OR “Primary Healthcare” OR “Primary 
Medical Care” OR “Family Medicine” OR “Family Healthcare” OR “Family Health Care” OR “Family Physician*” OR “Family 
Pract*” OR “General Practitioner*” OR “Nurse Practitioner*” OR “Family Doctor*” OR “Family Nurse*” OR “Community 
Medicine” OR “Community Pract*” OR “Ambulatory Care”))) AND (LIMIT-TO (LANGUAGE, “English”)) 
 
 

ACM Digital Libraries syntax (all Table 2 keywords and subject headings):  

 

+("Artificial Intelligence" "Computer Heuristics" "Expert Systems" "Fuzzy Logic" "Knowledge Base" "Machine Learning" "Natural 
Language Processing" "Support Vector Machine" "Neural Network" "Robotic" "Deep Learning" "Knowledge Representation" 
"Automated Reasoning" "Computer Vision" "Bayesian Network" "Bayes Network" (+acmdlCCS:(“Artificial Intelligence” “Robotic 
planning” “Distributed Artificial Intelligence” “Computer Vision” “Machine Learning” “Machine Learning Algorithms”))) 
+("Primary Care" "Primary Health Care" "Primary Healthcare" "Primary Medical Care" "Family Medicine" "Family Healthcare" 
"Family Health Care" "Family Physician" "Family Practice" "Family Practitioner" "General Practitioner" "Nurse Practitioner" 
"Community Medicine" "Community Practice" "Ambulatory Care" "Family Doctor" "Family Nurse") 
 

 

IEEE syntax (use Command Search, metadata only; subset of Table 2 keywords (database limit is 12)): 

 

((“Artificial Intelligence” OR “Machine Learning” OR “Data Mining” OR “Natural Language Processing”) AND (“Primary Care” OR 
“Primary Health Care” OR “Primary Healthcare” OR “Family Physician” OR “General Practitioner” OR “Family Doctor” OR “Nurse 
Practitioner” OR “Family Medicine”)) 
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AAAI syntax (use ‘search all categories for” line at https://aaai.org/ocs/index.php/index/index/search/advanced; subset of 

Table 2 keywords (254 character limit)):  

"Primary Care" OR "primary care" OR "Primary Health Care" OR "primary health care" OR "Primary Healthcare" OR "primary 
healthcare" OR "family physician" OR "general practitioner" OR "family doctor" OR "nurse practitioner" OR "family medicine" 
 
arXiv API access python code (adapted from https://arxiv.org/help/api/user-manual#Architecture; all Table 2 keywords):  

 

import urllib 
url = 
'https://export.arxiv.org/api/query?search_query=all:%28%22artificial+intelligence%22+OR+%22computer+heuristics%22+OR+%22
expert+system*%22+OR+%22fuzzy+logic%22+OR+%22knowledge+base%22+OR+%22machine+learning%22+OR+%22natural+la
nguage+processing%22+OR+%22support+vector+machine%22+OR+%22neural+network*%22+OR+%22robotic*%22+OR+%22de
ep+learning%22+OR+%22knowledge+representation%22+OR+%22automated+reasoning%22+OR+%22computer+vision%22+OR+
%22data+mining%22+OR+%22bayesian+network*%22+OR+%22bayes+network*%22%29+AND+all:%28%22primary+care%22+
OR+%22primary+health+care%22+OR+%22primary+healthcare%22+OR+%22primary+medical+care%22+OR+%22family+medici
ne%22+OR+%22family+healthcare%22+OR+%22family+health+care%22+OR+%22family+physician*%22+OR+%22family+pract*
%22+OR+%22general+practitioner*%22+OR+%22nurse+practitioner*%22+OR+%22family+doctor*%22+OR+%22family+nurse*
%22+OR+%22community+medicine%22+OR+%22community+pract*%22+OR+%22ambulatory+care%22%29&start=0&max_resul
ts=2000' 
data = urllib.urlopen(url).read() 
print data 
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SUPPLEMENTAL APPENDIX 3: ADDITIONAL METHODS & RESULTS 

 

Table 1S: Data Extraction Field Characterizations.  
Field Definition and Subfields  
Citation Information  Last and first name of first author, year of publication, and title 
Study Purpose(s) 
 

Three mutually exclusive overall research purposes for AI in the 
study:  
 

1. Method Development/Adaptation: Research that created novel 
AI methods or modified existing AI methods to accomplish a 
task relevant to PC. For example, developing a new supervised 
machine learning algorithm to learn a model that will predict 
the probability of pathological heart murmurs using digital 
heart sound recording data.78 This category includes studies 
that compare the performance of AI methods to the 
performance of humans or that include consultation with end 
users to inform tool development, as this is considered part of 
model testing, which may lead to further modifications before 
evaluating performance in the setting that the AI is intended to 
support (e.g. clinical practice.)   
 

2. Data Analysis: Existing AI methods were used to analyze 
and/or extract information from data. For example, using 
natural language processing algorithms to identify cases of 
familial hypercholesteremia from electronic health records 79. 
 

3. Evaluation: Research that included AI implemented in its 
intended setting, possibly as part of a pilot study to assess 
impact or usability characteristics of a tool. For example, 
assessing the impact of a machine learning-derived diagnosis 
model on reducing cervical intraepithelial neoplasia 
overdiagnosis in a Dutch national population screening 
program 80. 

Author 
Appointment(s) 

Author affiliations as presented on the manuscript, divided into 16 
categories: Biological and Biomedical Sciences, Company, Computer 
Science, Engineering, Epidemiology and Biostatistics, Health 
Sciences, Informatics, Mathematics, Medicine – Unspecified, 
Medicine – Specialty, Family Medicine and Primary Care, Nursing, 
Public Health, Statistics, Other (specified), and Unknown when not 
enough affiliation information was provided to identify a broad 
discipline. When an author had multiple affiliations, all were 
recorded. 

Primary Care 
Function(s)  

Nine categories of PC functions or tasks that the researched AI 
supported or is intended to support in the future:  
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1. Diagnostic Decision Support: AI provided information to 

inform diagnosis, such as the probability that a patient has a 
particular condition.   
 

2. Treatment Decision Support: AI provided information to 
inform treatment decisions, whereby treatment was interpreted 
broadly to include any management or care provided (or 
absence of unnecessary actions) to someone with the health 
condition(s) or symptom(s) of interest. 
 

3. Referral Support: AI provided information to support 
decisions about referring patients to specialist services or AI 
assisted with technical aspects of the referral process. 

 
4. Future State Prediction: AI provided predictions towards 

future events, for example utilization of emergency 
department, development of a health condition, or prognosis 
for an existing condition.   
 

5. Health Care Utilization Analyses: AI provided information 
about interactions with or processes within health care 
systems, for example frequency or quantity of patient visits.   

 
6. Knowledge Base and Ontology Construction or Use: 

Construction or use of knowledge bases or ontologies 
including PC concepts.  

 
7. Information Extraction: AI used to extract knowledge from 

structured or unstructured data (e.g. electronic medical 
records) for further use.  

 
8. Descriptive Information Provision: AI used to summarize data 

in a meaningful way for human interpretation, for example 
prevalence of a condition or patterns of patient profiles.  
 

9. Other (specified): The PC function was not represented by the 
above categories; specifics were recorded.   

Author Reported 
Intended End-User(s)  
 
 
 
 
 
 

People who the research or research end-product was stated as 
intended for, regardless of whether those intended end users were 
involved with the research or how close the research was to being 
applicable for those users in practice setting: Patient, Physician, 
Nurse, Nurse Practitioner, Administrator, Researcher, Other 
(specified), or Unknown. If the study was developing a deployable AI 
method or tool (broadly defined) but more research was needed before 
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 the AI method of interest would be ready to implement or be utilized 
by its intended end user, Researcher was included as a target end user. 

Target Health 
Condition(s) 
 

The health condition of interest as stated by the study authors or 
inferred by reviewers, or Unknown if no condition was stated or 
inferable. Conditions were extracted in full form and MZ later 
organized them into 27 and 10 category formats. When a study 
intended for AI to be applicable for all health conditions “General” 
was used; specifics about any test conditions were also extracted. 

Location of Data 
Source(s) or intended 
location of 
implementation 

Country or next level of granularity where data were collected, or the 
geographical location where the study stated implementation would 
occur. Unknown was used when the location of data source was not 
stated or when all data were simulated. 

Subfield(s) of 
Artificial Intelligence 

Artificial Intelligence methods were organized according to 10 
subfields; a single study may include one or more subfields:  
 

1. Bayesian Network: Graphical models (directed acyclic graphs) 
used to describe dependency relationships among variables 
that enable the efficient representation of multivariate 
probability distributions. The resulting distributions can be 
queried to find the probability of an event occurring given a 
particular set of evidence. Bayesian networks can be 
developed manually, such as from physician input, learned 
from data, or created using a combination of the two. For 
example, Teles et al. (2015) use a Bayesian Network to assist 
the diagnosis of dengue fever disease. The model includes 
variables for dengue fever risk factors, such as ‘Respiratory 
Distress’. For prediction, a person’s current risk factor variable 
values are inputted and the conditional probability they have 
dengue fever is outputted.81 

 
2. Computer Vision: Includes extracting visual information and 

understanding it. Computer vision is distinct from image 
processing, which includes modifying an existing or creating a 
new image without focusing on the meaning of the image. For 
example, Zouridakis et al. (2015) present a smartphone app 
whereby a picture of a skin lesion is taken and computer vision 
is used to interpret the image and assess the likelihood of 
malignancy.82 

 
3. Data Mining: The process of eliciting information from 

collections of data, such as by finding and counting pattern 
occurrences using inferential algorithms; humans may then 
interpret these patterns. For example, Soler et al. (2015) used 
data mining on electronic medical records to identify 
relationships between reasons for encounter and diagnoses 
recorded for the corresponding visit.83 We did not consider 
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extracting information in a structured way, such as using a 
database query to get a basic count of disease X diagnoses, to 
be the type of data mining that falls under the umbrella of 
artificial intelligence. 

 
4. Expert System: Consists of two parts: 1) a knowledge base that 

contains facts and rules, such as if-then statements derived 
from medical guidelines and 2) an inference engine that uses 
the knowledge base to arrive at conclusions or answers to 
questions. For example, Lange et al. (1997) demonstrate the 
use of an expert system called Iliad for teaching diagnostic 
reasoning to Nurse Practitioner students.84 Illiad’s knowledge 
base is made up of medical facts and relationships. Bayesian 
or probabilistic and Boolean or deterministic reasoning may be 
used with the knowledge base to arrive at a level of confidence 
about a diagnosis.84   

 
5. Fuzzy Models: Rely on fuzzy logic and fuzzy sets to represent 

problems with uncertainty. They are often used to provide 
more flexibility to outcomes instead of requiring strict 
classification into pre-defined groups. For example, Katigari et 
al. (2017) used a fuzzy model as the inference engine for an 
expert system designed to support diagnosis of diabetic 
neuropathy.85 Model input includes parameters such as time 
with diabetes, symptom severity, and laboratory blood test 
values; model output is an estimate of diabetic neuropathy 
severity.85 

 
6. Natural Language Processing: The ability to read language 

used by humans and interpret it in a meaningful way; this is 
often accomplished by analysing syntactic and semantic 
characteristics of language. The input language may be audio 
or written. For example, Koeling et al. (2011) used natural 
language processing to analyse free text portions of medical 
records and enhance the accuracy of ovarian cancer symptom 
detection compared to only using the structured portion of 
medical records.86 

 
7. Robotics: Robotics within artificial intelligence refers to 

machines that can act autonomously to navigate and alter their 
environment. A robot may rely on other types of artificial 
intelligence, such as computer vision and natural language 
processing, to accomplish this. Robotics outside of artificial 
intelligence include machines that are programmed by humans 
to perform a defined set of actions. No examples of robotics 
were captured by our review. 
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8. Supervised Machine Learning: Involves an algorithm learning 

to associate labels with observations. In the context of health, 
the label is often an outcome, e.g. a disease state or outcome, 
and the observations are often patient variables. Labels may be 
numeric values or categorical classifications. Supervised 
machine learning uses existing labelled data which contain a 
collection of observations together with their correct label to 
produce a model that is able to assign a label to new, 
previously unseen observations. Supervised machine learning 
techniques include Support Vector Machines, K-Nearest 
Neighbours, Naïve Bayes Classifier, and Random Forest 
Decision Trees. For example, Cox et al. (2016) used 
supervised machine learning to help identify undiagnosed 
post-stroke spasticity.87 A model was trained using a large PC 
database that included the outcome of interest, post stroke 
spasticity events, and 72 candidate variables to predict the 
outcome, such as demographic information, prescriptions, and 
medical diagnoses.87 They then used the model to identify 
people who had a high probability of post-stroke spasticity and 
checked whether the event was recorded in their records; the 
results of this study suggested an under recording of post 
stroke spasticity in PC records.87 

 
9. Unsupervised Machine Learning: Algorithms learn patterns 

from unlabelled data (unlabelled meaning there are not 
defined, known outcome categories as was the case for 
supervised machine learning). Common unsupervised machine 
learning techniques include clustering data items into groups 
based on their similarity, association mining to identify 
observations that tend to occur together, autoencoders to 
condense data while maintaining adequate fidelity, and feature 
separation to examine different aspects of a dataset 
independently. For example, Newcomer et al. (2011) used 
cluster analysis on data from a health care organization to 
identify groups of complex patients who may benefit from 
targeted care strategies.88   
 

10. Other (specified): There are additional types of AI not 
captured by the above, such as multi-agent systems. We did 
not expect a high prevalence of these methods so did not 
create distinct categories, but recorded details when they 
arose. Other was also used to classify studies that did not 
focus on any specific technique of artificial intelligence. For 
example, Sola et al. (2018) studied physician perceptions of 
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artificial intelligence in general without isolating any 
particular artificial techniques.89 

Reviewer who 
extracted the data 

Initials of the person who (re)read the full text article and assigned 
values for the seven key characteristics outlined above: JKK, ALT, or 
DJL.  

Reviewer notes Optional free form notes from the person extracting the data.  
Legend: AI: Artificial Intelligence, PC: Primary Care. 
 
Notes: Subfields are ordered according to appearance in the results section of the manuscript. 
Cited examples are from studies captured by our scoping review.  
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Table 2S: Complete author appointment counts. 
 
Appointment Type Number of studies with at least one author 

with the corresponding appointment 
Biological and Medical Sciences 29 
Company 49 
Computer Science 97 
Engineering 71 
Epidemiology and Biostatistics 23 
Health Sciences 33 
Informatics 63 
Mathematics 16 
Medicine – Other 94 
Medicine – Specialty 99 
Medicine – Family or Primary Care 57 
Nursing 4 
Public Health 20 
Statistics 15 
Other 132 
Unknown 110 

 
Note: Each study fulfills one or more appointment type categories; each category is counted a 
maximum of one time for any given study.  
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Table 3S:   Detailed breakdown of location  
 
Location Number of Studies 
Unknown or Not Applicable        113 
United States 79 
United Kingdom 38 
Netherlands 26 
Australia 17 
Canada 13 
Spain 10 
Brazil 9 
India 9 
Iran 8 
Sweden 8 
China 6 
Germany  6 
Italy  5 
Slovenia 4 
Australia and France 3 
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Croatia  3 
France  3 
Greece 3 
New Zealand  3 
Belgium  2 
Egypt 2 
Finland 2 
Ireland  2 
Japan 2 
Norway 2 
Singapore 2 
Taiwan 2 
Austria 1 
Barcelona 1 
Bulgaria 1 
Canada and United States and United 
Kingdom and Brazil and Netherlands and 
Australia 

1 

Colombia 1 
Czech Republic 1 
Denmark  1 
Europe 1 
Germany and Norway  1 
Greece and Bulgaria and Albania and 
Fyrom and Turkey 

1 

Hong Kong 1 
Israel 1 
Kuwait 1 
Malaysia 1 
Malta and Netherlands 1 
Portugal  1 
Saudi Arabia 1 
South Africa 1 
Switzerland 1 
Turkey  1 
United Kingdom and Greece and 
Germany  

1 

United States and Panama 1 
United States and United Kingdom 1 
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