Supplementary materials for

Boon HA, Van den Bruel A, Struyf T, Gillemot A, Bullens D, Verbakel JY. Clinical features for the diagnosis of pediatric urinary tract infections: systematic review and meta-analysis. *Ann Fam Med*. 2021;19(5):437-446.

Appendix 1 PRISMA checklist (p2-4)

Appendix 2 Electronic search strategy (PubMed/MEDLINE) (p5-6)

Appendix 3 Risk of bias and applicability assessment (p7)

Appendix 4. Likelihood ratios and post-test disease probabilities (%) (dumbbell plots) of clinical features for urinary tract infections (p8-12)

Appendix 5. Forest plots of likelihood ratios for urinary signs and symptoms (p14)

Appendix 6. Likelihood ratios and post-test disease probabilities (%) (dumbbell plots) of prediction rules for urinary tract infections (p15)

Appendix 7. Sensitivity analyses (p16-17)

Supplemental Table 1. Characteristics of Included Studies

References (p22-25)

Supplemental Figure 1. PRISMA flow diagram of included studies. (p26)

The supplementary material had been provided by the authors to give readers additional information about their work.

Appendix 1. PRISMA – DTA (diagnostic test accuracy) checklist

	#	PRISMA-DTA Checklist Item	Reported on page #
TITLE / ABSTRACT			
Title	1	Identify the report as a systematic review (+/- meta-analysis) of diagnostic test accuracy (DTA) studies.	1
Abstract	2	Abstract: See PRISMA-DTA for abstracts.	2
INTRODUCTION	•		
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Clinical role of index test	D1	State the scientific and clinical background, including the intended use and clinical role of the index test, and if applicable, the rationale for minimally acceptable test accuracy (or minimum difference in accuracy for comparative design).	4
Objectives	4	Provide an explicit statement of question(s) being addressed in terms of participants, index test(s), and target condition(s).	4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (participants, setting, index test(s), reference standard(s), target condition(s), and study design) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full search strategies for all electronic databases and other sources searched, including any limits used, such that they could be repeated.	5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5-6
Definitions for data extraction	11	Provide definitions used in data extraction and classifications of target condition(s), index test(s), reference standard(s) and other characteristics (e.g. study design, clinical setting).	5-6
Risk of bias and applicability	12	Describe methods used for assessing risk of bias in individual studies and concerns regarding the applicability to the review question.	6

METHODS							
Diagnostic accuracy measures	13	State the principal diagnostic accuracy measure(s) reported (e.g. sensitivity, specificity) and state the unit of assessment (e.g. per-patient, per-lesion).	6				
Synthesis of results	14	Describe methods of handling data, combining results of studies and describing variability between studies. This could include, but is not limited to: a) handling of multiple definitions of target condition. b) handling of multiple thresholds of test positivity, c) handling multiple index test readers, d) handling of indeterminate test results, e) grouping and comparing tests, f) handling of different reference standards	6-7				

Section/topic	#	PRISMA-DTA Checklist Item	Reported on page #				
Meta-analysis	D2	Report the statistical methods used for meta-analyses, if performed.	6-7				
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.					
RESULTS							
Study selection	17	Provide numbers of studies screened, assessed for eligibility, included in the review (and included in meta-analysis, if applicable) with reasons for exclusions at each stage, ideally with a flow diagram.	7				
Study characteristics	18	For each included study provide citations and present key characteristics including: a) participant characteristics (presentation, prior testing), b) clinical setting, c) study design, d) target condition definition, e) index test, f) reference standard, g) sample size, h) funding sources	7-8				
Risk of bias and applicability	19	Present evaluation of risk of bias and concerns regarding applicability for each study.	8				
Results of individual studies	20	For each analysis in each study (e.g. unique combination of index test, reference standard, and positivity threshold) report 2x2 data (TP, FP, FN, TN) with estimates of diagnostic accuracy and confidence intervals, ideally with a forest or receiver operator characteristic (ROC) plot.	8-10				
Synthesis of results	21	Describe test accuracy, including variability; if meta-analysis was done, include results and confidence intervals.	8-10				
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression; analysis of index test: failure rates, proportion of inconclusive results, adverse events).	10				

DISCUSSION							
Summary of evidence	24	nmarize the main findings including the strength of evidence.					
Limitations	25	Discuss limitations from included studies (e.g. risk of bias and concerns regarding applicability) and from the review process (e.g. incomplete retrieval of identified research).	11				
Conclusions	26	Provide a general interpretation of the results in the context of other evidence. Discuss implications for future research and clinical practice (e.g. the intended use and clinical role of the index test).	12-13				
FUNDING							
Funding	27	For the systematic review, describe the sources of funding and other support and the role of the funders.	13				

Adapted From: McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, The PRISMA-DTA Group (2018). Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA. 2018 Jan 23;319(4):388-396. doi: 10.1001/jama.2017.19163. For more information, visit: www.prisma-statement.org.

Appendix 2. Electronic search strategy (PubMed/MEDLINE)

Concept 1: Urinary tract infections (bladder, kidney)

"Urinary Tract Infections" [Mesh] OR "Infection/urine" [Mesh] OR "cystitis" [Mesh] OR "pyelitis" [Mesh] OR "Pyelonephritis" [Mesh] OR "Urethritis" [Mesh] OR urinary-tract-infection* [tiab] OR UTI [tiab] OR ((infection* [tiab] OR inflam* [tiab]) AND (bladder [tiab] OR kidney [tiab] OR "urinary tract" [tiab])) OR bacteriuria* [tiab] OR pyuria* [tiab] OR bladder-infection* [tiab] OR "bladder inflammation" [tiab] OR cystitis [tiab] OR cystitides [tiab] OR urethritis [tiab] OR pyelocystitis [tiab] OR cystopyelitis [tiab] OR pyelonephritides [tiab] OR pyelonephritides [tiab] OR urosepsis [tiab] OR pyenephrosis [tiab]

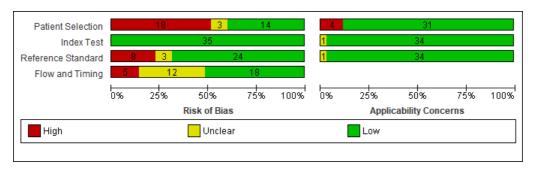
Concept 2: Signs and symptoms, diagnostic tests, clinical prediction rules

"Signs and Symptoms"[Mesh] OR "Diagnostic Techniques and Procedures"[Mesh] OR "Diagnosis"[Mesh:NoExp] OR "Clinical Decision-Making"[Mesh] OR "Decision Support Techniques" [Mesh] OR "Decision Trees" [Mesh] OR "diagnosis" [Subheading] OR "Reagent Kits, Diagnostic" [Mesh] OR "Point-of-Care Systems" [Mesh] OR "Biomarkers" [Mesh] OR "C-Reactive Protein"[Mesh] OR "Lactic Acid"[Mesh] OR "Procalcitonin"[Mesh] OR "Nitrates/urine"[Mesh] OR "leukocyte esterase" [Supplementary Concept] OR "Peroxidase/urine" [Mesh] OR "Lactoferrin/urine"[Mesh] OR "Immunoglobulin A, Secretory/urine"[Mesh] OR diagnos*[tiab] OR sign[tiab] OR signs[tiab] OR symptom*[tiab] OR clinical-feature*[tiab] OR clinical-assessment[tiab] OR anamnesis[tiab] OR "medical history" [tiab] OR symptom-evaluation * [tiab] OR symptomassessment*[tiab] OR physical-examination*[tiab] OR clinical-examination*[tiab] OR clinicalimpression*[tiab] OR intuition[tiab] OR "gut feeling"[tiab] OR prediction-rule*[tiab] OR decisiontree*[tiab] OR decision-support-techni*[tiab] OR decision-model*[tiab] OR decision-supportmodel*[tiab] OR apgar-score*[tiab] OR visual-analogue-scale*[tiab] OR "generally unwell"[tiab] OR letharqy[tiab] OR consciousness[tiab] OR confusion[tiab] OR disorientation[tiab] OR convulsion*[tiab] OR irritability[tiab] OR edema[tiab] OR deshydration[tiab] OR jaundice[tiab] OR pallor[tiab] OR sleepiness[tiab] OR capillary-refill-time*[tiab] OR vital-sign*[tiab] OR parameter*[tiab] OR saturation*[tiab] OR heart-rate*[tiab] OR pulse*[tiab] OR blood-pressure*[tiab] OR bodytemperature*[tiab] OR fever[tiab] OR pyrexia[tiab] OR shivering[tiab] OR chills[tiab] OR hypotherm*[tiab] OR respiratory-rate*[tiab] OR dyspnea[tiab] OR hypoxia[tiab] OR tachypnea[tiab] OR cyanosis[tiab] OR "failure to thrive" [tiab] OR failure-to-thrive [tiab] OR weight [tiab] OR feeding [tiab] OR "fluid intake"[tiab] OR constipation[tiab] OR diarrhea[tiab] OR nausea[tiab] OR vomiting[tiab] OR "urine appearance"[tiab] OR oliguria[tiab] OR polyuria[tiab] OR dysuria[tiab] OR mictalgia[tiab] OR "malodorous urine"[tiab] OR "cloudy urine"[tiab] OR "smelly urine"[tiab] OR incontinence[tiab] OR stranguria[tiab] OR frequency[tiab] OR urgency[tiab] OR haematuria[tiab] OR hematuria[tiab] OR "flank pain"[tiab] OR "back pain"[tiab] OR "suprapubic pain"[tiab] OR "suprapubic discomfort"[tiab] OR "abdominal pain"[tiab] OR "abdominal tenderness"[tiab] OR "costovertebral angle pain"[tiab] OR "costovertebral angle tenderness"[tiab] OR palpation[tiab] OR "painful kidney"[tiab] OR "palpable kidney"[tiab] OR percussion[tiab] OR uncircumcis*[tiab] OR "dysplastic kidney"[tiab] OR "Vesico-Ureteral Reflux"[tiab] OR laboratory-technique*[tiab] OR laboratory-test*[tiab] OR lab-test*[tiab] OR hematology-test*[tiab] OR hematological-test*[tiab] OR hematologic-test*[tiab] OR blood-test*[tiab] OR blood-gas*[tiab] OR point-of-care-test*[tiab] OR point-of-care-system*[tiab] OR POC-test*[tiab] OR POCT[tiab] OR near-patient-test*[tiab] OR rapid-test*[tiab] OR point-of-care-techn*[tiab] OR bedsidetest*[tiab] OR biomarker*[tiab] OR marker*[tiab] OR biochemical-marker*[tiab] OR immunologictest*[tiab] OR immunological-test*[tiab] OR "CRP"[tiab] OR "c reactive protein"[tiab] OR "c-reactive protein"[tiab] OR procalcitonin[tiab] OR nitrate[tiab] OR leucocyte[tiab] OR "erythrocyte sedimentation"[tiab] OR "glomerular filtration"[tiab] OR GFR[tiab] OR urea[tiab] OR lactoferrin[tiab] OR antimicrobial-peptide*[tiab] OR myeloperoxidase[tiab] OR interleukin*[tiab] OR "xanthine oxidase"[tiab] OR heparin-binding-protein*[tiab] OR "secretory IgA"[tiab] OR proteinase-inhibitor*[tiab] OR electrolyte*[tiab] OR "full blood count"[tiab] OR FBC[tiab] OR "lactic acid"[tiab] OR LDH[tiab] OR lactate[tiab] OR urine-test*[tiab] OR urinalysis[tiab] OR cytology[tiab] OR kidney-function-test*[tiab] OR urine-culture*[tiab] OR reagent-strip*[tiab] OR dipstick[tiab] OR test-strip*[tiab]

Concept 3: Children 0-18y

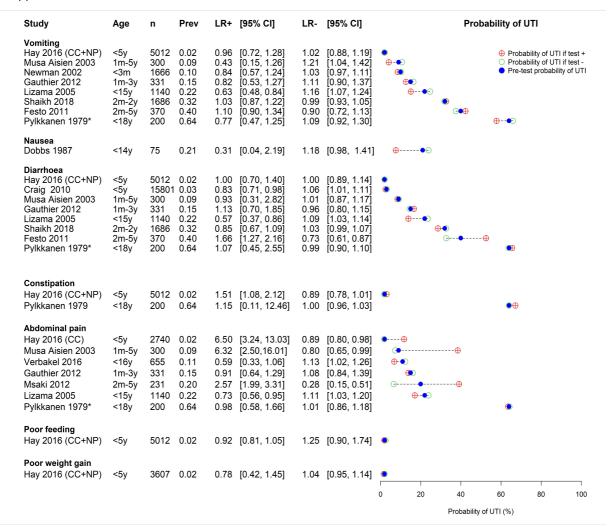
"Child"[Mesh] OR"Adolescent"[Mesh] OR "Infant"[Mesh] OR "Minors"[Mesh] OR baby[tiab] OR babies[tiab] OR newborn*[tiab] OR neonat*[tiab] OR perinatal*[tiab] OR post-

natal*[tiab] OR premature*[tiab] OR preterm*[tiab] OR pre-term*[tiab] OR child*[tiab] OR schoolchild*[tiab] OR pediatric*[tiab] OR paediatric*[tiab] OR toddler*[tiab] OR infant*[tiab] OR infancy[tiab] OR preteen*[tiab] OR pre-teen*[tiab] OR prepubertal*[tiab] OR prepubescent*[tiab] OR pubescent*[tiab] OR puberty[tiab] OR preschool*[tiab] OR pre-school*[tiab] OR boy*[tiab] OR girl*[tiab] OR minor*[tiab] OR kid[tiab] OR kids[tiab] OR offspring[tiab] OR adolescen*[tiab] OR teens[tiab] OR teenager*[tiab] OR youth*[tiab] OR student*[tiab] OR underage*[tiab] OR juvenile*[tiab] OR junior*[tiab] OR puerile*[tiab] OR young*[tiab] OR "day old"[tiab] OR "days old"[tiab] OR "month old"[tiab] OR "months old"[tiab] OR "age 1"[tiab] OR "age one"[tiab] OR "ages 1"[tiab] OR "ages one" OR 1-yearold*[tiab] OR one-year-old*[tiab] OR "1 year of age"[tiab] OR "age 2"[tiab] OR "age two"[tiab] OR "ages 2"[tiab] OR "ages two"[tiab] OR 2-year-old*[tiab] OR 2-years-old*[tiab] OR two-year-old*[tiab] OR two-year-old*[ti years-old*[tiab] OR "2 years of age"[tiab] OR "age 3"[tiab] OR "age three"[tiab] OR "ages 3"[tiab] OR ages three"[tiab] OR 3-year-old*[tiab] OR three-year-old*[tiab] OR 3-years-old*[tiab] OR three-yearsold*[tiab] OR "3 years of age"[tiab] OR "age 4"[tiab] OR "age four"[tiab] OR "ages 4"[tiab] OR "ages four"[tiab] OR 4-year-old*[tiab] OR four-year-old*[tiab] OR 4-years-old*[tiab] OR four-years-old*[tiab] OR "4 years of age" [tiab] OR "age 5" [tiab] OR "age five" [tiab] OR "ages 5" [tiab] OR "ages five" [tiab] OR 5-year-old*[tiab] OR five-year-old*[tiab] OR 5-years-old*[tiab] OR five-years-old*[tiab] OR "5 years of age"[tiab] OR "age 6"[tiab] OR "age six"[tiab] OR "ages 6"[tiab] OR "ages six"[tiab] OR 6-year-old*[tiab] OR six-year-old*[tiab] OR 6-years-old*[tiab] OR six-years-old*[tiab] OR "age" [tiab] OR "age" 7"[tiab] OR "age seven"[tiab] OR "ages 7"[tiab] OR "ages seven"[tiab] OR 7-year-old*[tiab] OR sevenyear-old*[tiab] OR 7-years-old*[tiab] OR seven-years-old*[tiab] OR "7 years of age"[tiab] OR "age 8"[tiab] OR "age eight"[tiab] OR "ages 8"[tiab] OR "ages eight"[tiab] OR 8-year-old*[tiab] OR eightyear-old*[tiab] OR 8-years-old*[tiab] OR eight-years-old*[tiab] OR "8 years of age"[tiab] OR "age 9"[tiab] OR "age nine"[tiab] OR "ages 9"[tiab] OR "ages nine"[tiab] OR 9-year-old*[tiab] OR nine-yearold*[tiab] OR 9-years-old*[tiab] OR nine-years-old*[tiab] OR "9 years of age"[tiab] OR "age 10"[tiab] OR "age ten" [tiab] OR "ages 10" [tiab] OR "ages ten" [tiab] OR 10-year-old* [tiab] OR ten-year-old* [tiab] OR 10-years-old*[tiab] OR ten-years-old*[tiab] OR "10 years of age"[tiab] OR "age 12"[tiab] OR "age twelve"[tiab] OR "ages 12"[tiab] OR "ages twelve"[tiab] OR 12-year-old*[tiab] OR twelve-year-old*[tiab] OR 12-vears-old*[tiab] OR twelve-vears-old*[tiab] OR "12 vears of age"[tiab] OR "age 14"[tiab] OR "age fourteen"[tiab] OR "ages 14"[tiab] OR "ages fourteen"[tiab] OR 14-year-old*[tiab] OR fourteenyear-old*[tiab] OR 14-years-old*[tiab] OR fourteen-years-old*[tiab] OR "14 years of age"[tiab]

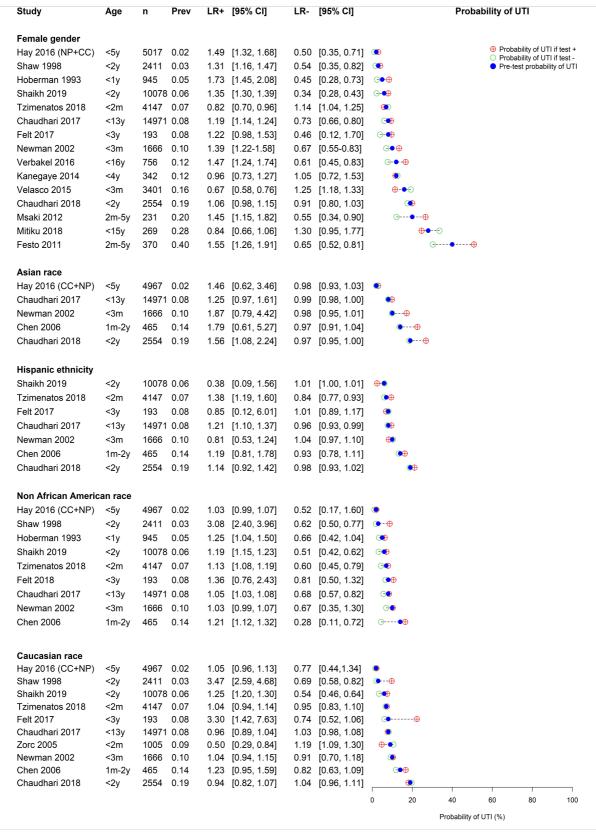

Concept 4: Outpatients, ambulatory care

"Ambulatory Care"[Mesh] OR "Ambulatory Care Facilities"[Mesh] OR "Office Visits"[Mesh] OR "Outpatient Clinics, Hospital" [Mesh] OR "General Practice" [Mesh] OR "Family Practice" [Mesh] OR "General Practitioners"[Mesh] OR "Physicians, Primary Care"[Mesh] OR "Physicians, Family"[Mesh] OR "Primary Health Care" [Mesh] OR "Emergency Medical Services" [Mesh] OR "Emergency Service, Hospital"[Mesh] OR "After-Hours Care"[Mesh] OR ambulatory[tiab] OR outpatient*[tiab] OR "primary health care"[tiab] OR "primary care"[tiab] OR "primary healthcare"[tiab] OR "prehospital care"[tiab] OR "after-hours"[tiab] OR "out-of-hours"[tiab] OR office-visit*[tiab] OR clinic-visit*[tiab] OR house-visit*[tiab] OR home-visit*[tiab] OR emergency-medical-service*[tiab] OR "emergency care"[tiab] OR "emergency healthcare"[tiab] OR emergency-service*[tiab] OR "urgent care"[tiab] OR "accident and emergency"[tiab] OR emergency-department*[tiab] OR emergency-unit*[tiab] OR emergencyward*[tiab] OR health-center*[tiab] OR health-centre*[tiab] OR "polyclinic*"[tiab] OR community-healthservice*[tiab] OR "community health care"[tiab] OR "community healthcare"[tiab] OR communityhealth-facilit*[tiab] OR community-health-clinic*[tiab] OR walk-in-center*[tiab] OR walk-in-centre*[tiab] OR walk-in-clinic*[tiab] OR gp[tiab] OR general-practi*[tiab] OR general-physician*[tiab] OR generaldoctor*[tiab] OR family-practi*[tiab] OR family-doctor*[tiab] OR family-physician*[tiab] OR emergencydoctor*[tiab] OR emergency-physician*[tiab] OR emergency-practitioner*[tiab]

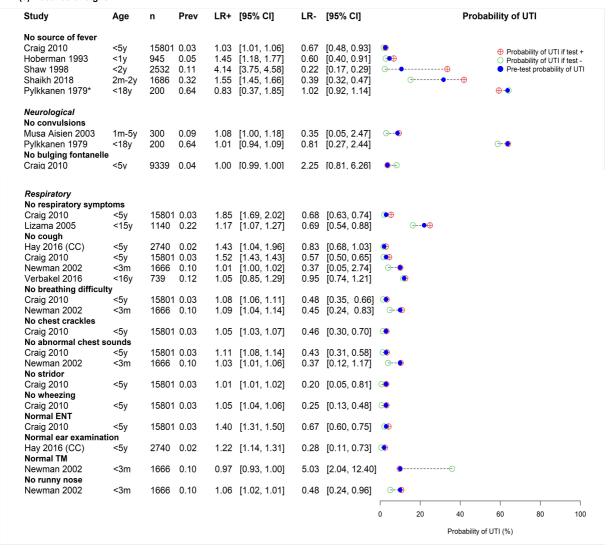
Appendix 3. Risk of bias and applicability concerns summary


Review authors' judgements about each domain for each included study

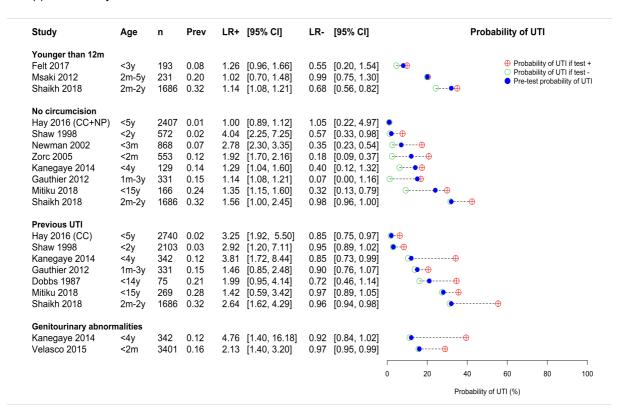
Review authors' judgements about each domain presented as percentages across included studies


Appendix 4. Likelihood ratios and post-test disease probabilities (%) (dumbbell plots) of clinical features for urinary tract infections

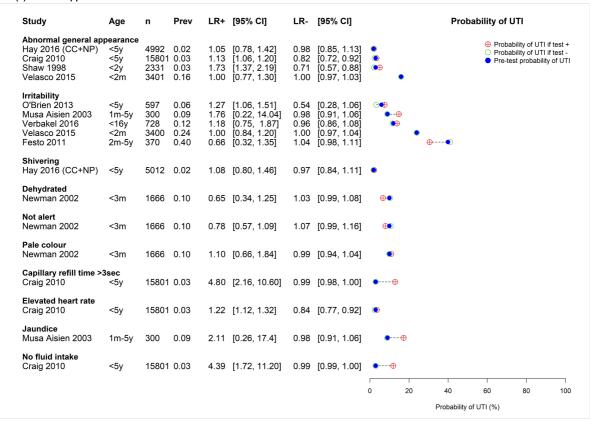
(a) Abdominal features


n=sample size; prev=prevalence; 95%Cl=95% Confidence Interval; LR+ = positive likelihood ratio; LR - =negative likelihood ratio; NP=nappy pad samples; CC=clean catch samples; *Data from Pylkkanen et al. (1979) were not included in the meta-analysis

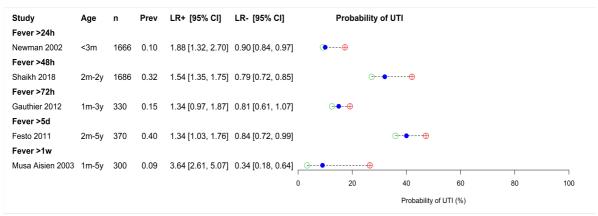
(b) Ethnicity, race and gender for UTI


n=sample size, prev=prevalence, 95%CI=95% Confidence Interval; LR+ = positive likelihood ratio, LR - =negative likelihood ratio, NP=nappy pad samples, CC=clean catch samples

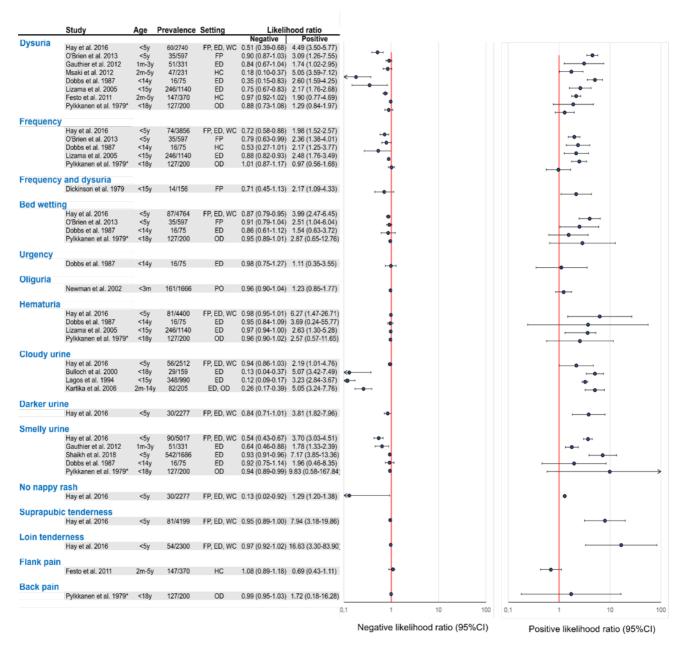
(c) Absence of signs


n=sample size; prev=prevalence; 95%Cl=95% Confidence Interval; LR+ = positive likelihood ratio; LR - =negative likelihood ratio; NP=nappy pad samples; CC=clean catch samples; *Data from Pylkkanen et al. (1979) were not included in the meta-analysis

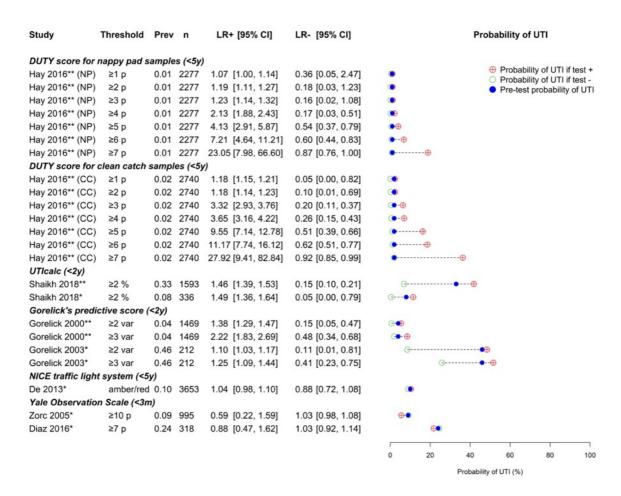
(d) Medical history


n=sample size, prev=prevalence, 95%Cl=95% Confidence Interval; LR+ = positive likelihood ratio, LR - =negative likelihood ratio, NP=nappy pad samples, CC=clean catch samples

(e) General appearance


n=sample size, prev=prevalence, 95%CI=95% Confidence Interval; LR+ = positive likelihood ratio, LR - =negative likelihood ratio, NP=nappy pad samples, CC=clean catch samples

(f) Fever duration


n=sample size, prev=prevalence, 95%Cl=95% Confidence Interval; LR+ = positive likelihood ratio, LR - =negative likelihood ratio, NP=nappy pad samples, CC=clean catch samples

Appendix 5. Forest plots of likelihood ratios for urinary signs and symptoms

ED= emergency department, FP= family practice, WC= walk-in clinic, HC: health center, OD= outpatient department of a hospital, PO= pediatricians' office, *Data from Pylkkanen et al (1979) were not included in the meta-analyses

Appendix 6. Likelihood ratios and pre- and post-test disease probabilities (%) (dumbbell plots) of combinations of signs and symptoms for urinary tract infections

UTI= urinary tract infection; n= sample size; prev=prevalence; 95%CI: 95% Confidence Interval; LR+= positive likelihood ratio; LR-=negative likelihood ratio; NP= nappy pad; CC=clean catch; *=validation study; **=derivation study; YOS=Yale Observation Scale; NICE=National Institute for Health and Care Excellence; y=year; m=month

Appendix 7. Sensitivity analyses (summary estimates)

Clinical feature	No.	n	Summary	Summary	Summary LR+	Summary LR-
	studies *		sensitivity (95% CI)	specificity (95% CI)	(95% CI)	(95% CI)
				(95 % Cl) ≥4) or features (LR- :	=0 25\	
Cloudy urine	4	3866	69% (30%-92%)	85% (72%-92%)	4.55 (3.73-5.56)	0.36 (0.13-1.02)
RS	3 (-1)	3661	67% (17-95%)	85% (68-94%)	4.47 (3.69-5.42)	0.40 (0.11-1.50)
Smelly urine	4	7109	31% (12%-59%)	93% (75%-98%)	4.13 (2.27-7.49)	0.75 (0.58-0.98)
ED only		2092	, ,			
•	3 (-1)	7034	23% (8-52%)	86% (86-99%)	5.47 (3.59-8.33)	0.81 (0.63-1.03) 0.67 (0.47-0.95)
Age <5y RS	3 (-1)		43% (22-68%)	85% (69-94%)	2.90 (1.61-5.22)	\ /
	8	7034	43% (22-68%)	85% (69-94%)	2.90 (1.61-5.22)	0.67 (0.47-0.95)
No circumcision		6712	88% (52%-98%)	52% (23%-80%)	1.81 (1.15-2.87)	0.24 (0.08-0.72)
ED only UTI symptoms	5 (-3)	3271 5291	88% (22-100%)	59% (16-91%)	2.12 (0.96-4.70) 2.13 (1.29-3.51)	0.21 (0.03-1.60) 0.33 (0.10-1.06)
	6 (-2) 7 (-1)	6546	80% (32-97%) 89% (46%-99%)	63% (29-87%)		0.20 (0.05-0.79)
Age <5y	/ (-1)	0040		54% (22%-84%)	1.95 (1.12-3.39)	0.20 (0.05-0.79)
Dyguria	7	E410		<mark>is: LR+ ≥2 or LR- ≤0.</mark>		0.60 (0.47.1.00)
Dysuria		5413	40% (19%-66%)	88% (80%-93%)	3.28 (2.22-4.86)	0.68 (0.47-1.00)
ED only other settings	3 (-5)	1475 1198	29% (8-68%)	86% (67-95%)	2.13 (1.40-3.24)	0.82 (0.59-1.15)
only	3 (-5)		34% (17-56%)	90% (81-95%)	3.27 (2.07-5.18)	0.74 (0.57-0.96)
UTI symptoms	4 (-4)	4215	47% (13-83%)	86% (73-94%)	3.34 (1.90-5.88)	0.62 (0.30-1.27)
No UTI	3 (-5)	1198	34% (17-56%)	90% (81-95%)	3.27 (2.07-5.18)	0.74 (0.57-0.96)
symptoms	F / O)	4400	0.40/ /4.00/ .070/ \	040/ (040/ 050/)	0.50 (0.00 0.00)	0.70 (0.40 4.44)
Age <5y	5 (-2)	4198	34% (12%-67%)	91% (84%-95%)	3.59 (2.06-6.26)	0.73 (0.48-1.11)
RS	6 (-1)	5338	49% (27-72%)	86% (78-91%)	3.40 (2.32-4.97)	0.59 (0.38-0.91)
Frequency	4	5668	36% (22%-53%)	84% (74%-90%)	2.21 (1.78-2.75)	0.76 (0.65-0.90)
UTI symptoms	3 (-1)	5071	35% (17-59%)	86% (74-93%)	2.45 (1.77-3.41)	0.76 (0.59-0.97)
RS	3 (-1)	5593	44% (30-59%)	79% (71-86%)	2.11 (1.68-2.67)	0.71 (0.58-0.87)
Previous UTI	7	7546	15% (9%-24%)	94% (88%-97%)	2.31 (1.73-3.10)	0.91 (0.86-0.96)
ED only	4 (-3)	4462	14% (8-23%)	94% (88-97%)	2.25 (1.46-3.48)	0.92 (0.87-0.97)
Age <5y	5 (-2)	7202	13% (7%-21%)	95% (90%-97%)	2.51 (1.82-3.47)	0.92 (0.87-0.97)
RS	6 (-1)	7471	18% (11-28%)	93 (86-96%) -R+<2 or LR- >0.5	2.34 (1.63-3.34)	0.89 (0.83-0.95)
Diarrhea	7	24 640	20% (12%-30%)	78% (73%-83%)	0.91 (0.68-1.22)	1.03 (0.96-1.10)
			, ,	, ,	,	, ,
ED only	5 (-2)	19 258	19% (9-35%)	77% (70-83%)	0.83 (0.51-1.33)	1.05 (0.95-1.16)
UTI symptoms	4 (-3)	8169	15% (8-27%)	80% (74-85%)	0.77 (0.53-1.12)	1.06 (1.00-1.12)
No UTI	3 (-4)	16 471	25% (13-44%)	76% (69-83%)	1.07 (0.71-1.60)	0.98 (0.85-1.13)
symptoms	0 (4)	00.500	000/ (4.4.000/)	770/ /70 040/)	0.00 (0.70 4.07)	4.04.(0.04.4.40)
Age <5y	6 (-1)	23 500	22% (14-33%)	77% (72-81%)	0.96 (0.72-1.27)	1.01 (0.94-1.10)
Vomiting	7	10 505	27% (19%-38%)	69% (61%-76%)	0.89 (0.74-1.06)	1.05 (1.00-1.12)
ED only	4 (-3)	3457	27% (20-37%)	72% (63-79%)	0.97 (0.85-1.10)	1.01 (0.96-1.07)
UTI symptoms	4 (-3)	8169	27% (21-34%)	68% (63-73%)	0.85 (0.69-1.05)	1.07 (0.98-1.16)
No UTI symptoms	3 (-4)	2336	28% (12-51%)	70% (53-83%)	0.93 (0.70-1.24)	1.03 (0.93-1.14)
Age <5y	6 (-1)	9365	27% (17-38%)	70% (52-78%)	0.89 (0.72-1.09)	1.05 (0.98-1.12)
Abdominal pain	6	5397	29% (14%-51%)	84% (64%-94%)	1.86 (0.82-4.22)	0.84 (0.67-1.07)
ED only	3 (-3)	1771	25% (15-39)	81% (49-95%)	1.32 (0.47-3.72)	0.92 (0.72-1.78)
UTI symptoms	3 (-3)	4211	47% (19-77%)	65% (57-73%)	1.36 (0.67-2.77)	0.81 (0.44-1.50)
No UTI	3 (-3)	1186	16% (11-22%)	94% (80-98%)	2.61 (0.67-10.17)	0.90 (0.81-1.00)
symptoms				(
Age <5y	4 (-2)	3602	37% (14%-67%)	88% (62%-97%)	3.18 (0.21-6.14)	0.71 (0.47-0.96)
RS	5 (-1)	4742	34% (15-58%)	78% (58-89%)	1.49 (0.68-3.25)	0.86 (0.62-1.20)
No cough	4	20 946	81% (33%-97%)	32% (7%-76%)	1.19 (0.93-1.52)	0.61 (0.34-1.07)
No UTI	3 (-1)	18 206	56% (41-70%)	59% (47-70%)	1.36 (1.10-1.70)	0.75 (0.58-0.96)
symptoms	` ′				` '	
Age <5y	3 (-1)	20 207	88% (38-99%)	21% (3-72%)	1.12 (0.90-1.39)	0.55 (0.25-1.19)
RS	3 (-1)	20 207	88% (38-99%)	21% (3-72%)	1.12 (0.90-1.39)	0.55 (0.25-1.19)

Irritability	5	5395	15% (4%-48%)	85% (63%-95%)	1.00 (0.67-1.48)	1.00 (0.93-1.07)
Age <5y	4 (-1)	4667	14% (2%-56%)	85% (56%-96%)	0.97 (0.49-1.45)	1.01 (0.93-1.08)
RS	4 (-1)	4667	9% (3-21%)	91% (81-96%)	0.91 (0.55-1.48)	1.01 (0.97-1.06)
Abnormal appearance	4	26 525	36% (17%-60%)	70% (50%-85%)	1.21 (1.02-1.44)	0.91 (0.80-1.04)
ED only	3 (-1)	21 533	33% (12-65%)	70% (43-88%)	1.11 (0.98-1.26)	0.95 (0.86-1.06)
Female gender	15	47 351	66% (57%-74%)	47% (42%-52%)	1.24 (1.11-1.39)	0.73 (0.58-0.91)
ED only	9 (-6)	39 042	62% (48-75%)	47% (41-54%)	1.18 (0.99-1.40)	0.80 (0.60-1.08)
other settings only	4 (-11)	2536	72% (59-83%)	47% (37-57%)	1.37 (1.20-1.56)	0.59 (0.43-0.81)
UTI symptoms	9 (-6)	13 436	65% (54-74%)	47% (41-53%)	1.22 (1.04-1.42)	0.76 (0.58 (0.98)
No UTI symptoms	6 (-9)	6424	70% (50-85%)	47% (40-54%)	1.32 (1.12-1.55)	0.64 (0.40-0.02)
Age <5y	12 (-2)	43 772	66% (64-76%)	45% (40-50%)	1.19 (1.05-1.35)	0.77 (0.59-1.00)
RS	13 (-2)	31 624	66% (55-75%)	46% (41-51%)	1.21 (1.07-1.36)	0.75 (0.59-0.96)
Caucasian	10	42 456	50% (34%-65%)	58% (42%-73%)	1.18 (0.96-1.46)	0.87 (0.73-1.04)
ED only	8 (-2)	35 824	56% (37% -74%)	52% (33-70%)	1.16 (0.93-1.44)	0.85 (0.66-1.09)
UTI symptoms	8 (-2)	39 786	50% (32-67%)	55% (37-72%)	1.10 (0.88-1.38)	0.92 (0.75-1.13)
Age <5y	9 (-1)	27 486	53% (35-71%)	57% (37-74%)	1.23 (0.95-1.59)	0.82 (0.66-1.03)
RS	9 (-1)	27 486	63% (35-71%)	57% (37-74%)	1.23 (0.96-1.59)	0.82 (0.66-1.03)
Hispanic ethnicity	7	34 074	12% (4%-32%)	89% (76%-95%)	1.03 (0.74-1.44)	1.00 (0.95-1.05)
ED only	6 (-1)	32 408	13% (3-38%)	88% (72-95%)	1.06 (0.74-1.51)	0.99 (0.93-1.05)
UTI symptoms	6 (-1)	32 408	13% (3-38%)	88% (72-95%)	1.06 (0.74-1.51)	0.99 (0.93-1.05)
Age <5y	6 (-1)	19 103	11% (3-35%)	89% (74-96%)	1.01 (0.68-1.51)	1.00 (0.95-1.05)
RS	6 (-1)	19 103	11% (3-35%)	89% (74-96%)	1.01 (0.68-1.51)	1.00 (0.95-1.05)
Asian race	5	24 623	5% (4%-7%)	96% (95%-97%)	1.42 (1.09-1.86)	0.98 (0.97-1.00)
ED only	3 (-2)	17 990	7% (5-9%)	97% (95-98%)	2.02 (1.19-3.41)	0.97 (0.94-0.99)
UTI symptoms	4 (-1)	22 957	5% (4-7%)	96% (95-97%)	1.44 (1.07-1.93)	0.98 (0.97-1.00)
Age <5y	4 (-1)	9652	5% (4-7%)	97% (96-98%)	1.45 (1.01-2.06)	0.98 (0.97-1.00)
RS	4 (-1)	9652	5% (4-7%)	97% (96-98%)	1.45 (1.01-2.06)	0.98 (0.97-1.00)
Non-African American	10	42 397	85% (76%-91%)	27% (14%-45%)	1.17 (1.02-1.33)	0.55 (0.48-0.63)
ED only	8 (-2)	35 764	88% (79-93%)	22% (10-40%)	1.12 (1.00-1.26)	0.56 (0.47-0.68)
UTI symptoms	8 (-2)	39 786	86% (75-93%)	26% (12-48%)	1.16-0.99-1.36)	0.54 (0.46-0.65)
Age <5y	9 (-1)	27 426	84% (74-91%)	29% (15-49%)	1.18-1.01-1.38)	0.55 (0.48-0.64)
RS	9 (-1)	27 426	84% (74-91%)	29% (15-49%)	1.18-1.01-1.38)	0.55 (0.48-0.64)

Bivariate random effects model by Chu and Cole et al. (2006); UTI= urinary tract infection; No. = Number; n= sample size; LR+ = positive likelihood ratio; LR-= negative likelihood ratio; y=years; ED only= analysis of studies performed at the emergency department; other settings only= analysis of studies performed at outpatient settings, other than the ED; UTI symptoms= analysis of studies that included children with UTI symptoms; no UTI symptoms= analysis of studies that included children with fever or acute illness episode, regardless of UTI symptoms; RS= analysis of studies with suboptimal reference standard test not included; 95%CI = 95% confidence intervals

^{*}Meta-analysis not possible if <3 studies available per subgroup

Supplemental Table 1. Characteristics of Included Studies

Study	Setting, Country	Design	Age range, (median/meanª) No. girls (%)	Prevalence ^b (%)	Inclusion criteria	Reference standard
Bonadio et al. 1991 ⁴⁴	ED USA	Retrosp, cons	1-2m (NR) NR	16/683 (2.3%)	Fever (>38°C)	Urine culture single pathogen ≥ 10⁵cfu/ml (NR)
Bulloch et al. 2000 ²³	ED USA	Prosp, conv, cx	1m-19y (5.8y) 122/159 (77%)	29/159 (18.2%)	Specimen available	Urine culture ≥10⁴cfu/ml (UC, ≥10⁵cfu/ml (MS,UC)
Craig et al. 2010 ⁴³	ED Australia	Prosp, cons, cx	<5y (NR) 8814/15 781 (56%)	543/15 781(3.4%)	Fever (≥38.0°C) or 'felt hot'	Urine culture any cfu/ml(SPA), ≥10⁴cfu/ml (UC), ≥10⁵cfu/ml (MS)
Chaudhari et al. 2017 ⁴⁷	ED USA	Retrosp, cx	<13y (1.5y) NR (60%)	1150/14 971(7.7%)	Test results available	Urine culture single pathogen ≥5x10 ⁴ cfu/ml (UC), ≥5x10 ⁴ cfu/ml (boys) (MS), ≥10 ⁵ cfu/ml (girls) (MS)
Chaudhari et al. 2018 ²⁴	ED USA	Retrosp, cons, cx	<2y (6.1m) 1542/2554 (60%)	494/2554 (19.3%)	Test results available	Urine culture single pathogen ≥5x10⁴cfu/ml (UC)
Chen et al. 2006 ²⁵	ED USA	Retrosp	1m-2y (NR) NR (57%)	64/465 (13.8%)	Fever (>37.9°C) and specimen available	Urine culture $\ge 10^3$ cfu/ml (SPA), $\ge 10^4$ cfu/ml (UC), $\ge 10^5$ cfu/ml (BS)
De et al. 2013 ⁵³	ED Australia	Prosp, cons, cx	<5y (NR) NR	362/3653 (9.9%)	Fever (≥38.0°C) or 'felt hot'	Urine culture any cfu/ml (SPA), ≥10 ⁴ cfu/ml (UC), ≥10 ⁵ cfu/ml (CC, MS)
Diaz et al. 2016 ⁵²	ED Spain	Retrosp	<3m (43.4d) 128/318 (40%)	76/318 (23.9%)	Fever (≥38°C) and tests results available	Urine culture ≥5x10⁴cfu/ml (SPA, UC)

Dickinson et al. 1979 ⁴⁸	FP UK	Prosp, cx	<15y (NR) NR (67%)	14/156 (9.0%)	Symptoms of UTI	Urine culture single pathogen ≥10 ⁵ cfu/ml in three consecutive specimens (MS, BS)
Dobbs et al. 1987 ²⁶	HC UK	Prosp, cx	0-14y (NR) NR	16/75 (21.3%)	Symptoms of UTI	Urine culture $\ge 10^5$ cfu/ml, $\ge 10^4$ to 10^5 cfu/ml and $\ge 10^2$ wbc/mm ³ (MS)
Duong et al. 2016 ⁴⁹	ED Belgium	Prosp, cons, cx	≤16y (44m) 739/1247 (59%)	221/1247 (17.7%)	Specimen available	Urine culture single pathogen Any cfu/ml (SPA), ≥10⁵cfu/ml (CC, UC)
Felt et al. 2017 ²⁷	ED, USA	Prosp, conv, cx	<3y (9m) 139/193 (72%)	15/193 (7.8%)	Fever (≥38°C) and specimen available	Urine culture any cfu/ml (UC or SPA)
Festo et al. 2011 ²⁸	HC, Tanzania	Prosp, cons, cx	2m-5y (18m) 176/370 (48%)	147/370 (39.7%)	Fever	Urine culture any cfu/ml (SPA), ≥10 ⁵ cfu/ml (MS)
Gauthier et al. 2012 ⁴⁶	ED Canada	Prosp, cons, cx	1m-3y (12m) 189/331 (57%)	51/331 (15.4%)	Symptoms of UTI: FWS (>38.5°C), irritability or vomiting	Urine culture any cfu/ml of gram negative species (SPA), ≥10⁴cfu/ml gram positive species (SPA), ≥10⁵cfu/ml (UC), ≥10⁴cfu/ml pseudomonas species (UC), ≥10⁵cfu/ml (CC or MS)
Gorelick et al. 2000 ⁵⁰	ED USA	Prosp, cons, cx der	<2y (11 m) ^a 1469/1469 (100%)	63/1469 (4.3%)	FWS (≥38.3°C) in girls	Urine culture single specimen ≥10⁴cfu/ml (UC)
Gorelick et al. 2003 ⁵¹	ED USA	Retrosp, ncc	1m-2y (9.4m) ^a 212/212 (100%)	98/212 (46.2%)	Test results available	Urine culture pathogen ≥5x10 ⁴ cfu/ml (UC)
Hay et al. 2016 ¹⁵	FP,ED,WC UK	Prosp, cons, cx	<5y (CC: 94% >2y) (NP: 82% <2y) CC:1473/2740 (54%)	CC:60/2740 (2.2%) NP:30/227 7 (1.3%)	≥1 symptoms of UTI (NICE-2)	Urine culture single pathogen ≥10 ⁵ cfu/ml (NP, CC, BS), or pathogen ≥10 ⁵ cfu/ml with 1000-fold difference between the growth of this and the next species (NP, CC, BS)

			NP:1094/2277 (48%)			
Hoberman et al. 1993 ²⁹	ED USA	Prosp, cons, cx	≤1y (68% >2m) 419/945 (44%)	50/945 (5.3%)	Fever (≥38.3°C)	Urine culture ≥10⁴cfu/ml (UC)
Kanegaye et al. 2014 ³⁰	ED USA	Prosp, conv, cx	≤4y (8.1m) 202/342 (59%)	42/342 (12.3%)	Fever (≥38°C) and test results available	Urine culture ≥5x10⁴cfu/ml (UC)
Kartika et al. 2006 ³¹	ED,OD Indonesia	Prosp, cx	2m-14y (5.6y) 118/342 (58%)	82/205 (40.0%)	Suspicion of UTI	Urine culture single pathogen (CC, MS)
Lagos et al. 1994 ³²	ED Chile	Prosp, cx	<15y (26% <2y) (59% <5y) 737/990 (74%)	348/990 (35.2%)	Suspicion of UTI	Urine culture ≥10 ⁵ cfu/ml and ≥10wbc/mm ³ (SPA, MS or BS) or 2 positive cultures obtained within 5d
Lizama et al. 2005 ³³	ED Chile	Retrosp, cons	11d-14y (2.3y) 739/1140 (65%)	246/1140 (21.6%)	Specimen available	Urine culture any cfu/ml (SPA) ≥10⁴cfu/ml (UC), ≥10⁵cfu/ml (MS)
Mitiku et al. 2018 ³⁴	OD Ethiopia	Prosp, cons, cx	<15y (20.5%<1y) (60% <5y) 103/269 (38%)	74/269 (27.5%)	Symptoms of UTI: ≥1: t°≥37.5°C, vomiting, dysuria, frequency, urgency, loin pain, darker change	Urine culture ≥10⁵cfu/ml (MS)
Msaki et al. 2012 ³⁵	HC Tanzania	Prosp, cons, cx	2m-5y (15m) 126/231 (55%)	47/231 20.3%	Fever (≥37.5°C)	Urine culture any cfu/ml (SPA), ≥10⁵cfu/ml (MS)

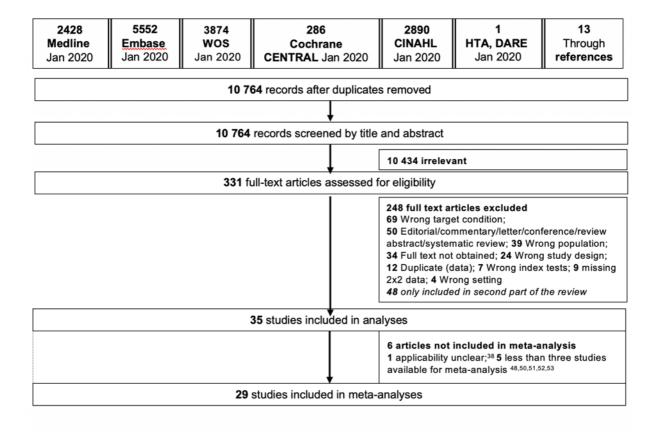
Musa-Aisien et al. 2003 ³⁶	ED Nigeria	Prosp, cons, cx	1m-5y (18m) 123/300 (41%)	26/300 (8.7%)	Fever (≥38°C)	Urine culture ≥10 ⁵ cfu/ml (SPA, CC or MS)
Newman et al. 2002 ³⁷	PO USA	Prosp, cx	≤3m (32% <1m) (75%<2m) 798/1666 (48%)	161/1666 9.7%	Fever (≥38°C)	Urine culture single pathogen ≥10 ² cfu/ml (SPA), ≥2x10 ⁴ cfu/ml (UC), ≥10 ⁵ cfu/ml (BS, CC)
O'Brien et al. 2013 ⁴	FP UK	Prosp, cons, cx	≤5y (2.3y) 284/597 (48%)	35/597 (5.9%)	Illness episode <28d	Urine culture ≥10 ⁵ cfu/ml (NP, CC)
Pylkkanen et al. 1979 ³⁸	OD Finland	Prosp, cx	<18y (64.5%≤2y) NR	127/200 (63.5%)	Suspicion of UTI	Urine culture any cfu/ml (Uricult and blood agar plate;SPA)
Shaikh et al. 2018 ¹⁶	ED USA	Retrosp, ncc	2m-2y (72.9%<1y) der: 1216/1686 (72%) val: 291/384 (76%)	der: 542/1686 (32.2%) val: 30/384 (7.8%)	Fever (≥38°C) and specimen available cases=positive culture controls=negative culture	Urine culture ≥5x10⁴cfu/ml (UC) and pyuria
Shaikh et al. 2019 ⁴⁵	ED USA	Retrosp, cons, cx	<2y (7.0m) 6743/10 078 (67%)	617/10 078 (6.1%)	Test results available	Urine culture pathogen ≥5x10⁴cfu/ml (UC)
Shaw et al. 1998 ³⁹	ED USA	Prosp, cons, cx	boys<1y (41.5%<6m) girls<2y (55.3%<12m) 1469/2411 (61%)	80/2411 (3.3%)	Fever (≥38.5°C) and symptoms of UTI	Urine culture ≥10 ⁴ cfu/ml (UC)

Tzimenatos et al. 2018 ⁴⁰	ED USA	Prosp, conv, cx	<60d (31.3%<28d) 1771/4147 (43%)	289/4147 (7.0%)	Fever (>38°C) and test results available	Urine culture pathogen ≥10³cfu/ml (SPA), ≥5x10⁴cfu/ml (UC)
Velasco et al. 2015 ¹⁷	ED Spain	Prosp, cons, cx	<90d (46d) 1372/3401 (40%)	547/3401 (16.1%)	Fever (≥38°C) and test results available	Urine culture single pathogen ≥5x10 ⁴ cfu/ml (SPA, UC)
Verbakel et al. 2015 ⁴¹	FP, ED,OD Belgium	Prosp, cons, cx	1m-16y (2.0y) 362/756 (48%)	87/756 (11.5%)	Illness episode ≤5d	Urine culture ≥10 ⁵ cfu/ml (NR)
Zorc et al. 2005 ⁴²	ED USA	Prosp, cx	≤60d (35.5d)ª 439/1005 (44%)	91/1005 (9.1%)	Fever (≥38°C)	Urine culture $\ge 10^3$ cfu/ml(SPA), $\ge 5 \times 10^4$ cfu/ml (UC), $\ge 10^4$ cfu/ml + positive urinalysis (UC)

UTI= urinary tract infection; USA= United States; UK= United Kingdom; ED= Emergency departments; FP= family practices; OD= outpatient department of a hospital; HC= health centers; PO= pediatricians' offices; Prosp= Prospective design; retrosp= Retrospective design; cx= Cross-sectional design; cons= Consecutive enrolment; conv= convenience sampling; ncc= nested case-control; y= years; d= days; m= months; °C= degrees Celsius; FWS = fever without a source for infection; CRP= C-reactive protein; WBC= white blood cell (in urine); UC= urethral catheterization; SPA=suprapubic aspiration; MS=midstream sample; CC= clean catch sample (first stream); BS=bag specimen; NP= nappy pad sample; NR= not reported; POC=point-of-care; hpf = high polarized field; cfu= colony forming unit; ml=milliliter

^amean (median not provided); ^bprevalence= No. of children with UTI/sample size

REFERENCES


- 1. Butler CC, O'Brien K, Pickles T, et al; DUTY study team. Childhood urinary tract infection in primary care: a prospective observational study of prevalence, diagnosis, treatment, and recovery. *Br J Gen Pract*. 2015;65(633):e217-e223.
- 2. Whiting P, Westwood M, Bojke L, et al. Clinical effectiveness and cost-effectiveness of tests for the diagnosis and investigation of urinary tract infection in children: a systematic review and economic model. *Health Technol Assess*. 2006;10(36):iii-iv, xi-xiii, 1-154.
- 3. Coulthard MG, Vernon SJ, Lambert HJ, Matthews JN. A nurse led education and direct access service for the management of urinary tract infections in children: prospective controlled trial. *BMJ*. 2003;327(7416):656.
- 4. O'Brien K, Edwards A, Hood K, Butler CC. Prevalence of urinary tract infection in acutely unwell children in general practice: a prospective study with systematic urine sampling. *Br J Gen Pract*. 2013;63(607):e156-e164.
- 5. Shaikh N, Ewing AL, Bhatnagar S, Hoberman A. Risk of renal scarring in children with a first urinary tract infection: a systematic review. *Pediatrics*. 2010;126(6):1084-1091.
- 6. Roberts KB. Revised AAP guideline on UTI in febrile infants and young children. *Am Fam Physician*. 2012;86(10):940-946.
- 7. Stein R, Dogan HS, Hoebeke P, et al; European Association of Urology; European Society for Pediatric Urology. Urinary tract infections in children: EAU/ESPU guidelines. *Eur Urol.* 2015;67(3):546-558.
- 8. National Institute for health and Care Excellence (NICE). CG54 Urinary tract infection in under 16s: diagnosis and management. Published Aug 2007. Updated Oct 2018. Accessed Jan 2020. https://www.nice.org.uk/guidance/cg54
- 9. Leung AKC, Wong AHC, Leung AAM, Hon KL. Urinary tract infection in children. *Recent Pat Inflamm Allergy Drug Discov.* 2019;13(1):2-18.
- 10. Kaufman J, Temple-Smith M, Sanci L. Urinary tract infections in children: an overview of diagnosis and management. *BMJ Paediatr Open*. 2019;3(1):e000487.
- 11. Shah L, Mandlik N, Kumar P, Andaya S, Patamasucon P. Adherence to AAP practice guidelines for urinary tract infections at our teaching institution. *Clin Pediatr (Phila)*. 2008;47(9):861-864.
- 12. Shaikh N, Morone NE, Lopez J, et al. Does this child have a urinary tract infection? *JAMA*. 2007;298(24):2895-2904.
- 13. Obuchowski NA. Sample size calculations in studies of test accuracy. *Stat Methods Med Res.* 1998;7(4):371-392.
- 14. Knottnerus JA, Buntinx F. *The Evidence Base of Clinical Diagnosis: Theory and Methods of Diagnostic Research.* Wiley-Blackwell; 2009.
- 15. Hay AD, Birnie K, Busby J, et al. The Diagnosis of Urinary Tract infection in Young children (DUTY): a diagnostic prospective observational study to derive and validate a clinical algorithm for the diagnosis of urinary tract infection in children presenting to primary care with an acute illness. *Health Technol Assess*. 2016;20(51):1-294.
- 16. Shaikh N, Hoberman A, Hum SW, et al. Development and validation of a calculator for estimating the probability of urinary tract infection in young febrile children. *JAMA Pediatr.* 2018;172(6):550-556.

- 17. Velasco R, Benito H, Mozun R, et al; Group for the Study of Febrile Infant of the RiSEUP-SPERG Network. Using a urine dipstick to identify a positive urine culture in young febrile infants is as effective as in older patients. *Acta Paediatr*. 2015;104(1):e39-e44.
- 18. Van den Bruel A, Haj-Hassan T, Thompson M, Buntinx F, Mant D; European Research Network on Recognising Serious Infection investigators. Diagnostic value of clinical features at presentation to identify serious infection in children in developed countries: a systematic review. *Lancet*. 2010;375(9717):834-845.
- 19. Jaeschke R, Guyatt GH, Sackett DL. Users' guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. *JAMA*. 1994;271(9):703-707.
- 20. Crewe S, Rowe PC. Research and statistics: likelihood ratio in diagnosis. *Pediatr Rev.* 2011;32(7):296-298.
- 21. Chu H, Cole SR. Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach. *J Clin Epidemiol*. 2006;59(12):1331-1332, author reply 1332-1333.
- 22. Steinhauser S, Schumacher M, Rücker G. Modelling multiple thresholds in metaanalysis of diagnostic test accuracy studies. *BMC Med Res Methodol*. 2016;16(1):97.
- 23. Bulloch B, Bausher JC, Pomerantz WJ, Connors JM, Mahabee-Gittens M, Dowd MD. Can urine clarity exclude the diagnosis of urinary tract infection? *Pediatrics*. 2000;106(5):E60.
- 24. Chaudhari PP, Monuteaux MC, Bachur RG. Microscopic bacteriuria detected by automated urinalysis for the diagnosis of urinary tract infection. *J Pediatr*. 2018;202:238-244.e1.
- 25. Chen L, Baker MD. Racial and ethnic differences in the rates of urinary tract infections in febrile infants in the emergency department. *Pediatr Emerg Care*. 2006;22(7):485-487.
- 26. Dobbs FF, Fleming DM. A simple scoring system for evaluating symptoms, history and urine dipstick testing in the diagnosis of urinary tract infection. *J R Coll Gen Pract*. 1987;37(296):100-104.
- 27. Felt JR, Yurkovich C, Garshott DM, et al. The utility of real-time quantitative polymerase chain reaction genotype detection in the diagnosis of urinary tract infections in children. *Clin Pediatr (Phila)*. 2017;56(10):912-919.
- 28. Epaphura Festo BRK. Aldofina Hokororo, Stephen E. Mshana. Predictors of urinary tract infection among febrile children attending at Bugando Medical Centre Northwestern, Tanzania. *Arch Clin Microbiol.* 2011;2(5).
- 29. Hoberman A, Chao HP, Keller DM, Hickey R, Davis HW, Ellis D. Prevalence of urinary tract infection in febrile infants. *J Pediatr.* 1993;123(1):17-23.
- 30. Kanegaye JT, Jacob JM, Malicki D. Automated urinalysis and urine dipstick in the emergency evaluation of young febrile children. *Pediatrics*. 2014;134(3):523-529.
- 31. Kartika I, Damanik MP, Soenarto SY. Diagnostic test of urine clarity in urinary tract infection. *Paediatr Indones*. 2006;46(4):170-173.
- 32. Rossana Lagos Z. JCS, Patricio Herrera L. Utilidad de una tira reactiva y del aspecto macroscópico de la orina para descartar la sospecha clínica de infección del tracto urinario en niños ambulatorios. *Rev Chil Pediatr*. 1994;65(2):88-94.

- 33. Lizama C M, Luco I M, Reichhard T C, Hirsch B T. Infección del tracto urinario en un servicio de urgencia pediátrico: Frecuencia y características clínicas. *Rev Chilena Infectol*. 2005;22(3):235-241.
- 34. Mitiku E, Amsalu A, Tadesse BT. Pediatric urinary tract infection as a cause of outpatient clinic visits in southern Ethiopia: A Cross Sectional Study. *Ethiop J Health Sci.* 2018;28(2):187-196.
- 35. Msaki BP, Mshana SE, Hokororo A, Mazigo HD, Morona D. Prevalence and predictors of urinary tract infection and severe malaria among febrile children attending Makongoro health centre in Mwanza city, North-Western Tanzania. *Arch Public Health*. 2012;70(1):4.
- 36. Musa-Aisien AS, Ibadin OM, Ukoh G, Akpede GO. Prevalence and antimicrobial sensitivity pattern in urinary tract infection in febrile under-5s at a children's emergency unit in Nigeria. *Ann Trop Paediatr.* 2003;23(1):39-45.
- 37. Newman TB, Bernzweig JA, Takayama JI, Finch SA, Wasserman RC, Pantell RH. Urine testing and urinary tract infections in febrile infants seen in office settings: the Pediatric Research in Office Settings' Febrile Infant Study. *Arch Pediatr Adolesc Med.* 2002;156(1):44-54
- 38. Pylkkänen J, Vilska J, Koskimies O. Diagnostic value of symptoms and clean-voided urine specimen in childhood urinary tract infection. *Acta Paediatr Scand*. 1979;68(3):341-344.
- 39. Shaw KN, Gorelick M, McGowan KL, Yakscoe NM, Schwartz JS. Prevalence of urinary tract infection in febrile young children in the emergency department. *Pediatrics*. 1998;102(2):e16.
- 40. Tzimenatos L, Mahajan P, Dayan PS, et al; Pediatric Emergency Care Applied Research Network (PECARN). Accuracy of the urinalysis for urinary tract infections in febrile infants 60 days and younger. *Pediatrics*. 2018;141(2):e20173068.
- 41. Verbakel JY, Lemiengre MB, De Burghgraeve T, et al. Should all acutely ill children in primary care be tested with point-of-care CRP: a cluster randomised trial. *BMC Med*. 2016;14(1):131.
- 42. Zorc JJ, Levine DA, Platt SL, et al; Multicenter RSV-SBI Study Group of the Pediatric Emergency Medicine Collaborative Research Committee of the American Academy of Pediatrics. Clinical and demographic factors associated with urinary tract infection in young febrile infants. *Pediatrics*. 2005;116(3):644-648.
- 43. Craig JC, Williams GJ, Jones M, et al. The accuracy of clinical symptoms and signs for the diagnosis of serious bacterial infection in young febrile children: prospective cohort study of 15 781 febrile illnesses. *BMJ*. 2010;340:c1594.
- 44. Bonadio WA, McElroy K, Jacoby PL, Smith D. Relationship of fever magnitude to rate of serious bacterial infections in infants aged 4-8 weeks. *Clin Pediatr (Phila)*. 1991;30(8):478-480.
- 45. Shaikh N, Shope MF, Kurs-Lasky M. Urine specific gravity and the accuracy of urinalysis. *Pediatrics*. 2019;144(5):e20190467.
- 46. Gauthier M, Gouin S, Phan V, Gravel J. Association of malodorous urine with urinary tract infection in children aged 1 to 36 months. *Pediatrics*. 2012;129(5):885-890.
- 47. Chaudhari PP, Monuteaux MC, Shah P, Bachur RG. The importance of urine concentration on the diagnostic performance of the urinalysis for pediatric urinary tract infection. *Ann Emerg Med*. 2017;70(1):63-71.e8.
- 48. Dickinson JA. Incidence and outcome of symptomatic urinary tract infection in children. *Br Med J.* 1979;1(6174):1330-1332.

- 49. Duong HP, Wissing KM, Tram N, Mascart G, Lepage P, Ismaili K. Accuracy of automated flow cytometry-based leukocyte counts to rule out urinary tract infection in febrile children: a prospective cross-sectional study. *J Clin Microbiol*. 2016;54(12):2975-2981.
- 50. Gorelick MH, Shaw KN. Clinical decision rule to identify febrile young girls at risk for urinary tract infection. *Arch Pediatr Adolesc Med.* 2000;154(4):386-390.
- 51. Gorelick MH, Hoberman A, Kearney D, Wald E, Shaw KN. Validation of a decision rule identifying febrile young girls at high risk for urinary tract infection. *Pediatr Emerg Care*. 2003;19(3):162-164.
- 52. Díaz MG, García RP, Gamero DB, et al. Lack of accuracy of biomarkers and physical examination to detect bacterial infection in febrile infants. *Pediatr Emerg Care*. 2016;32(10):664-668.
- 53. De S, Williams GJ, Hayen A, et al. Accuracy of the "traffic light" clinical decision rule for serious bacterial infections in young children with fever: a retrospective cohort study. *BMJ*. 2013;346:f866.
- 54. Hay AD, Whiting P, Butler CC. How best to diagnose urinary tract infection in preschool children in primary care? *BMJ*. 2011:343. https://doi.org/10.1136/bmj.d6316
- 55. Zorc JJ, Kiddoo DA, Shaw KN. Diagnosis and management of pediatric urinary tract infections. *Clin Microbiol Rev.* 2005;18(2):417-422.

Supplemental Figure 1. PRISMA flow diagram of included studies

Legend: PRISMA = Preferred Reporting Items for a Systematic review and Meta-Analysis of Diagnostic Test Accuracy Studies; WOS = Web Of Science; HTA = Health Technology Assessments