

Reed JF III. Adjusted chi-square statistics: application to clustered binary data in primary care. Ann Fam Med. 2004;2:201-203.

http://www.annfammed.org/cgi/content/full/2/3/201/DC1

Appendix 1. Computing Adjustment to Intraclass Correlation in Analytic Methods Specific to Randomized Cluster Trials

- Suppose there are m_i , i = 1, 2, clusters randomized to either treatment or control group. Let x_{ij} denote the number of successes among the n_{ij} observations in the jth cluster (j = 1, 2) with $p'_i = x_{ij}/n_{ij}$ the cluster-specific success rate. We let $p'_i = x_i/n_i$, where $x_i = \sum_j x_{ij}$ and $n_i = \sum_j n_{ij}$ and $p' = \sum_i x_i / \sum_i n_i$. Then an ANOVA estimator of the intracluster correlation coefficient (ICC) p'(5-6) is: $p' = (MSC MSE)/(MSC + (n_o 1)MSE)$. where: $MSC = \sum_i \sum_j n_{ij} (p'_{ij} p'_i)^2 / (m 2)$, $MSE = \sum_i \sum_j n_{ij} p'_{ij} (1 p'_{ij})^2 / (n m)$, $n_o = (n \sum_i n'_{ai}) / (m 2)$, $n'_{ai} = \sum_i n'_{ij}/n_i$, $m = \sum_i m_i$, and $n = \sum_i n_i$.
- **Brier's statistic** (χ_b^2) . This adjustment is based on the clustering effect within the treatment (C_1) and control (C_2) groups.¹ An underlying assumption is that C_1 and C_2 are homogeneous across treatment groups. $\chi_b^2 = \chi^2/C$, where $C' = \Sigma_i$ $(n_iC_i)/N$ and $C_i = 1 + (n_{ai} 1)$ p'. χ^2 is the usual Pearson chi-square.
- Rosner and Milton's chi-square (χ^2_{rm}) . This statistic estimates the presence of dependency both between and within the comparison groups.² $\chi^2_{rm} = \chi^2 / (\Sigma_i n_i (1 + (n_{ai} 1) p' p'_e/n. \chi^2 is Pearson's chi-square, and p'_e is the estimated ICC for treatment status. Rosner and Milton, p' = [Pr (++) Pr^2(+)]/[Pr(+)Pr(-)]. When the competitive treatments are independent, p'_e = 1.$
- **Donner and Donald's chi-square** (χ^2_{dd}) . χ^2_{dd} is dependent on clustering "correction" factors estimated separately in each of the treatment groups.³ $\chi^2_{dd} = \sum_i ((x_i n_i p')2/(n_i C_i p'(1 p')))$, with $C_i = 1 + (n_{ai} 1) p'$. χ^2_{dd} assumes that C_1 and C_2 are homogeneous.
- **Rao and Scott's chi-square** (χ_{rs}^2) , $\chi_{rs}^2 = \sum_i (x'_i n'_i p')^2 / [n'_i p'(1 p')]$ with $p' = \sum x'_i / \sum n'_i$. Where, p_i is the overall sample proportion $(p'_i = x_i/n_i, x_i = \sum_j x_{ij}, and n_i = \sum_j n_{ij})$ and the variance of p'_i for large m_i is: $v_i = m_i(m_i-1)^{-1} n^{-2} \sum_j r_{ij}^2$, where $r_{ij} = x_{ij}-n_{ij} p'$. The variance inflation due to clustering d_i is the ratio of v_i to the estimated binomial $p'_i (1 p'_i)/n_i$. This inflation factor is called the design effect and $n'_i = n_i/d_i$ is termed the effective sample size. The data (x_i, n_i) is transformed to (x'_i, n'_i) , I = 1, 2, ..., k, where $x'_i = x_i/d_i$. χ_{rs}^2 statistic makes no assumption regarding the nature of the clustering or homogeneity of design effects.⁴
- Rao and Scott's chi-square (χ^2_{prs}) . $\chi^2_{prs} = \chi^2_{rs}/d$, where $d = \sum_i [(1 n_i/n) p'_i (1 p'_i)d_i]/[p'(1 p')]$. χ^2_{prs} assumes a pooled estimate of a common design effect.⁴

References

- 1. Brier SS. Analysis of contingency tables under cluster sampling. *Biometrika*. 1980;67:591-596.
- 2. Rosner B, Milton RC. Significance testing for correlated binary outcome data. *Biometrics*. 1988;44:505-512.
- 3. Donner A, Donald A. The statistical analysis of multiple binary measurements. J Clin Epidem. 1988;41:899-906.
- 4. Rao JNK, Scott AJ. A simple method for the analysis of clustered binary data. *Biometrics*. 1992;48:577-585.

ANNALS OF FAMILY MEDICINE • WWW.ANNFAMMED.ORG • VOL. 2, NO. 3, • MAY/JUNE 2004 Copyright © 2004 The Annals of Family Medicine, Inc