Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 27, 2015

Quantile Regression with Clustered Data

  • Paulo M.D.C. Parente and João M.C. Santos Silva EMAIL logo

Abstract

We study the properties of the quantile regression estimator when data are sampled from independent and identically distributed clusters, and show that the estimator is consistent and asymptotically normal even when there is intra-cluster correlation. A consistent estimator of the covariance matrix of the asymptotic distribution is provided, and we propose a specification test capable of detecting the presence of intra-cluster correlation. A small simulation study illustrates the finite sample performance of the test and of the covariance matrix estimator.

JEL Classifications:: C12; C21; C23

Corresponding author: João M.C. Santos Silva, Department of Economics, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; and CEMAPRE, Rua do Quelhas 6, 1200-781 Lisboa, Portugal, E-mail:

Acknowledgments

We thank the Editor Jason Abrevaya and an anonymous referee for many useful comments and suggestions; the usual disclaimer applies. Santos Silva also gratefully acknowledges partial financial support from Fundação para a Ciência e Tecnologia (Programme PEst-OE/EGE/UI0491/2013).

Appendix

Throughout the Appendix cr, CS, M, and T denote the cr, Cauchy-Schwarz, Markov, and triangle inequalities, respectively. LLN denotes the Khintchine’s Weak Law of Large Numbers, UWL denotes a uniform weak law of large numbers such as Lemma 2.4 of Newey and McFadden (1994), and CLT is the Lindeberg-Lévy central limit theorem.

Proof of Theorem 1: We use Theorem 2.7 of Newey and McFadden (1994). Note that

β^=argminβkSG(β)SG(β0)=argminβk[1Gg=1Gi=1nρθ(ygixgiβ)1Gg=1Gi=1nρθ(ugi)].

We have to show that SG(β)–SG(β0) converges uniformly to a function. In this case pointwise convergence suffices as pointwise convergence of convex functions implies uniform convergence on compact subsets. Note that

SG(β)SG(β0)=1Gg=1Gi=1n[ρθ(ygixgiβ)ρθ(ugi)]=1Gg=1Gi=1n[ρθ(ugixgiδ)ρθ(ugi)],

where δ=ββ0. Note that Knight’s identity (Koenker 2005, 121) tells us that

ρθ(uv)ρθ(v)=vψθ(u)+0v{I[us]I[u0]}ds,

where ψθ(u)=θ–I(u<0). Thus

SG(β)SG(β0)=1Gg=1Gi=1nxgiδψθ(ugi)+1Gg=1Gi=1n0xgiδ{I[ugis]I[ugi0]}ds.

Now by a LLN 1Gg=1Gi=1nxgiδψθ(ugi)=op(1) and the second term of the rhs converges to

S¯(δ)=i=1nE[0xgiδ{F[s|xgi]θ}ds].

Note that S¯(δ)=0 if and only if δ=0 and S¯(δ)>0 if δ≠0. To see this note that if xgiδ>0 for some i F[s|xgi]–θ>0, thus 0xgiδ{F[s|xgi]θ}ds>0. If xgiδ<0 for some i F[s|xgi]–θ<0, thus 0xgiδ{F[s|xgi]θ}ds>0. Since δ=ββ0=0 is a unique local minimizer and the limiting function is convex, δ=ββ0=0 is also a global minimizer and the function is convex and consequently β^=β0+op(1).    ■

Proof of Theorem 2: We adapt the proof of Koenker (2005, 121). Consider the objective function

ZG(δ)=g=1Gi=1n[ρθ(ugixgiδ/G)ρθ(ugi)].

This function is convex and minimized at δ^G=G(β^β0). Using Knight’s identity we have

ZG(δ)=Z1G(δ)+Z2G(δ)Z1G(δ)=1Gg=1Gi=1nxgiδψθ(ugi)Z2G(δ)=g=1Gi=1n0G1/2xgiδ{I[ugis]I[ugi0]}ds.

Now Z1G(δ)=–δW, where W=G1/2g=1Gi=1nxgiψθ(ugi). Also, by a CLT, WDN(0,C) where

C=Var(i=1nxgiψθ(ugi))=E[i=1nxgiψθ(ugi)(j=1nxgjψθ(ugj))]=E[i=1nj=1nxgixgjψθ(ugi)ψθ(ugj)].

Now write

Z2Ggi(δ)=0G1/2xgiδ{I[ugis]I[ugi0]}ds,

and Z2G(δ)=g=1Gi=1nZ2Ggi(δ). Note that

Z2G(δ)=g=1Gi=1nE[Z2Ggi(δ)|xgi]+RG(δ),

where

RG(δ)=g=1Gi=1n{Z2Ggi(δ)E[Z2Ggi(δ)|xgi]}.

Note also that

g=1Gi=1nE[Z2Ggi(δ)|xgi]=g=1Gi=1n0G1/2xgiδ{F[s|xgi]θ}ds=1Gg=1Gi=1n0xgiδ{F[tG1/2|xgi]θ}dt=1Gg=1Gi=1n0xgiδ{F[tG1/2|xgi]θt/G}tdt=1Gg=1Gi=1n0xgiδ{f[0|xgi]}tdt+op(1)=12Gg=1Gi=1nδf[0|xgi]xgixgiδ+op(1).

Now by CS

(8)Z2Ggi(δ)=0G1/2xgiδ{I[ugis]I[ugi0]}ds|xgiδ|G1/2||δ||||xgi||G1/2. (8)

Note that E[RG(δ)]=0 and that by cr, (8), and CS we have

Var(RG(δ))g=1GE[(i=1nZ2Ggi(δ))2]ng=1Gi=1nE[Z2Ggi(δ)2]n||δ||G1/2g=1Gi=1nE[Z2Ggi(δ)||xgi||]=n||δ||G1/2g=1Gi=1nE[E[Z2Ggi(δ)|xgi]||xgi||]=n||δ||G3/2g=1Gi=1nE[||xgi||0xgiδ{F[tG1/2|xgi]θt/G}tdt]n||δ||2G3/2g=1Gi=1nE[||xgi||δf[0|xgi]xgixgiδ]+o(1)n||δ||32G1/2f1i=1nE[||xgi||3]+o(1)=o(1).

Thus RG(δ)=op(1). Hence by a LLN

Z2G(δ)=12Gg=1Gi=1nδf[0|xgi]xgixgiδ+op(1)=δBδ/2+op(1).

Therefore

ZG(δ)=δW+δBδ/2+op(1).

The convexity of –δW+δ/2 assures that the minimizer is unique and therefore

G(β^β0)=argminZG(δ)Dδ^0=argminδW+δBδ/2.

Now note that δ^0=B1W (see Koenker 2005, 122, and the references therein).    ■

Proof of Theorem 3: The proof is similar to that of Lemma 5 of Kim and White (2003). Let BG=(2cGG)1g=1Gi=1nI(|ugi|cG)xgixgi. Using the mean value theorem we have E[BG]=E[i=1nf(c˜G|xgi)xgixgi], where |c˜G|cG and therefore c˜G=o(1). Hence, by the Lebesgue dominated convergence theorem E[BG]=B. It follows from the law of large numbers for double arrays (Davidson 1994, Corollary 19.9, 301, and Theorem 12.10, 190) that BGpB. We now show (i) |B˜GBG|p0 where B˜G=(2cGG)1g=1Gi=1nI(|u^gi|c^G)xgixgi, and (ii) |B^B˜G|p0. The conclusion follows from T.

To prove (i) consider the (h, j)th element of |B˜GBG|, which is given by

|(2cGG)1g=1Gi=1n[I(|u^gi|c^G)I(|ugi|cG)]xgihxgij|.

Now using the facts that u^gi=ugi(β^β0)xgi, I(|a|≤b)=I(ab)–I(a<–b), |I(x≤0)–I(y≤0)|≤I(|x|≤|xy|), |I(x<0)–I(y<0)|≤I(|x|≤|xy|), T, and CS we have

|(2cGG)1g=1Gi=1n[I(|u^gi|c^G)I(|ugi|cG)]xgihxgij|U1G+U2GU1G=(2cGG)1g=1Gi=1n[I(|ugicG|dG)]|xgih||xgij|U2G=(2cGG)1g=1Gi=1n[I(|ugi+cG|dG)]|xgih||xgij|,

where dG=|cGc^G|+β^β0||xgi||. We prove that U1Gp0, the proof U2Gp0 is similar.

Let 𝒟1G={U1G}, D2G={cG1β^β0Δ}, and D3G={cG1|cGc^G|Δ} for a constant Δ>0. Thus

Pr(U1G>η)=Pr(D1G)Pr(D1GD2GD3G)+Pr(D2Gc)+Pr(D3Gc).

Now as G(β^β0)=Op(1) and cG1=o(G) it follows that limGPr(D2Gc)=0. Also as c^G/cGp1, we have limGPr(D3Gc)=0. Additionally if cG1β^β0Δ and cG1|cGc^G|Δ we have |dG|≤cGΔ+cGΔ||xgi||. Hence by M

Pr(D1GD2GD3G)(2ηcGG)1g=1Gi=1nE[cGΔcGΔ||xgi||cGΔ+cGΔ||xgi||f(s|xgi)ds|xgih||xgij|](2ηcGG)1g=1Gi=1nE[cGΔcGΔ||xgi||cGΔ+cGΔ||xgi||f1ds|xgih||xgij|]=(η)1Δi=1nE[(||xgi||+1)|xgih||xgij|]<

under Assumptions 3. Now take Δ arbitrarily small and consequently U1Gp0.

To prove (ii), note that B^B˜G=(cGc^G1)B˜G. Note also that by (i) B˜G=Op(1) and since (cGc^G1)=op(1) by assumption, the result follows.    ■

Proof of Theorem 4: For simplicity of notation we write gi:=g=1Gi=1n and j:=j=1n. Note that

T=1Ggi(jzgizgjψθ(u^gi)ψθ(u^gj)ψθ(u^gi)2zgi2)=1Ggij,ijzgizgjψθ(u^gi)ψθ(u^gj)=1Ggi(j,ijzgizgjψθ(ugi)ψθ(ugj))+G,

where

G=1Ggi(j,ijzgizgj[ψθ(u^gi)ψθ(u^gj)ψθ(ugi)ψθ(ugj)]).

Now by Lemma 1

G=1G1/2gij,ijzgizgjhgij(β^)+op(1),

where

hgij(β^)=θ2θF(xgj(β^β0)|xgj)θF(xgi(β^β0)|xgi)+F(xgi(β^β0)|xgi)×F(xgj(β^β0)|xgj),ij.

By a Taylor expansion around β0 we have

G=1Ggij,ijzgizgjHgij(β˜)G(β^β0)+op(1),

where β˜ is on the line segment joining β^ and β0 and

Hgij(β˜)=θf(xgj(β˜β0)|xgj)xgjθf(xgi(β˜β0)|xgi)xgi+f(xgi(β˜β0)|xgi)×F(xgj(β˜β0)|xgj)xgi+f(xgj(β˜β0)|xgj)F(xgi(β˜β0)|xgi)xgj,

where ij. Now notice that

1Ggij,ijzgizgjHgij(β˜)=op(1)

by a UWL. Since G(β^β0)=Op(1) we have RG=op(1). Thus

T=1Ggi(j,ijzgizgjψθ(ugi)ψθ(ugj))+op(1)

and consequently TDN(0,D) as D>0 and

D=E[(i=1n[j=1,ijnzgizgjψθ(ugi)ψθ(ugj)])2]n2i=1nj=1,ijnE[zgi4]1/2E[zgj4]1/2(θ+1)2<

by two applications of cr and one of CS.    ■

Let

mG(β)=1Ggi(j,ijzgizgj[θI(ugixig(ββ0))][θI(ugjxgi(ββ0))]).

Lemma 1Suppose that Assumption 4 holds. Then, under H0, for any δG=o(1) we have

sup||ββ0||δG|G(mG(β)mG(β0))1G1/2gij,ijzgizgjhgij(β)|=op(1),

where

hgij(β)=θ2θF(xgj(ββ0)|xgj)θF(xgi(ββ0)|xgi)+F(xgi(ββ0)|xgi)×F(xgj(ββ0)|xgj).

Proof: Note that

mG(β)=1Ggij,ijzgizgjhgij(β),

where

hgij(β)=[θ2θI(ugjxgj(ββ0))θI(ugixgi(ββ0))+I(ugixig(ββ0))I(ugjxgj(ββ0))],ij.

Now taking the expected value of hgij(β) conditional on xg we have

E[hgij(β)|xg]=θ2θFj(xgj(ββ0)|xg)+θFi(xgi(ββ0)|xg)+Fi,j(xig(ββ0),xgj(ββ0)|xg)=θ2θF(xgj(ββ0)|xgj)+θF(xgi(ββ0)|xgi)+F(xgi(ββ0)|xgi)×F(xgj(ββ0)|xgj),

where the last line follows from H0 and i≠j.

Note now that

G(mG(β)mG(β0))1G1/2gij,ijzgizgjhgij(β)=1G1/2gij,ijzgizgj[hgij(β)hgij(β0)hgij(β)].

Since the indicator functions I(ugixig(ββ0)) and I(ugjxgi(ββ0)) and the conditional distribution functions F(xgi(ββ0)|xgi) and F(xgj(ββ0)|xgj) are functions of bounded variation (and hence type I class of functions in the sense of Andrews 1994) and as Assumptions 1 (a) and 4 (a) hold, it follows that

1G1/2gij,ijzgizgj[hgij(β)hgij(β0)hgij(β)]

is stochastic equicontinuous by Theorems 1, 2 and 3 of Andrews (1994).    ■

References

Abrevaya, J., and C. M. Dahl. 2008. “The Effects of Birth Inputs on Birthweight.” Journal of Business & Economic Statistics 26: 379–397.10.1198/073500107000000269Search in Google Scholar

Andrews, D. W. K. 1994. “Empirical Process Methods in Econometrics.” In Handbook of Econometrics, edited by R. F. Engle and D. L. McFadden, Vol. 4, 2247–2294. New York (NY): North Holland.10.1016/S1573-4412(05)80006-6Search in Google Scholar

Arellano, M. 1987. “Computing Robust Standard Errors for Within-Group Estimators.” Oxford Bulletin of Economics and Statistics 49: 431–434.10.1111/j.1468-0084.1987.mp49004006.xSearch in Google Scholar

Bhattacharya, D. 2005. “Asymptotic Inference from Multi-Stage Samples.” Journal of Econometrics 126: 145–171.10.1016/j.jeconom.2004.01.002Search in Google Scholar

Breusch, T. S., and A. R. Pagan. 1980. “The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics.” Review of Economic Studies 47: 239–253.10.2307/2297111Search in Google Scholar

Buchinsky, M. 1995. “Estimating the Asymptotic Covariance Matrix for Quantile Regression Models a Monte Carlo Study.” Journal of Econometrics 68: 303–338.10.1016/0304-4076(94)01652-GSearch in Google Scholar

Cameron, A. C., and D. L. Miller. 2011. “Robust Inference with Clustered Data.” In Handbook of Empirical Economics and Finance, edited by A. Ullah and D. E. Giles, 1–28. Boca Raton (FL): Chapman & Hall/CRC Press.10.1201/b10440-2Search in Google Scholar

Cameron, A. C., J. B. Gelbach, and D. L. Miller. 2011. “Robust Inference With Multiway Clustering.” Journal of Business & Economic Statistics 29: 238–249.10.1198/jbes.2010.07136Search in Google Scholar

Chamberlain, G. 1994. “Quantile Regression, Censoring and the Structure of Wages.” In Advances in Econometrics, edited by C. A. Sims, 171–209. Cambridge: Cambridge University Press.10.1017/CCOL0521444594.005Search in Google Scholar

Davidson, J. E. H. 1994. Stochastic Limit Theory. Oxford: Oxford University Press.10.1093/0198774036.001.0001Search in Google Scholar

Davidson, R., and J. G. MacKinnon. 2004. Econometric Theory and Methods. New York (NY): Oxford University Press.Search in Google Scholar

Fitzenberger, B., K. Kohn, and A. C. Lembcke. 2013. “Union Density and Varieties of Coverage: The Anatomy of Union Wage Effects in Germany.” Industrial & Labor Relations Review 66: 169–197.10.1177/001979391306600107Search in Google Scholar

Hagemann, A. 2014. “Cluster-Robust Bootstrap Inference in Quantile Regression Models.” arXiv:1407.7166v2 [math.ST].Search in Google Scholar

Kim, T. H., and H. White. 2003. “Estimation, Inference, and Specification Testing for Possibly Misspecified Quantile Regressions.” In Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later, edited by T. Fomby and R. C. Hill, 107–132. New York (NY): Elsevier.10.1016/S0731-9053(03)17005-3Search in Google Scholar

Kloek, T. 1981. “OLS Estimation in a Model where a Microvariable Is Explained by Aggregates and Contemporaneous Disturbances are Equicorrelated.” Econometrica 49: 205–207.10.2307/1911134Search in Google Scholar

Koenker, R. 2005. Quantile Regression. New York (NY): Cambridge University Press.10.1017/CBO9780511754098Search in Google Scholar

Koenker, R., and G. Bassett. 1978. “Regression Quantiles.” Econometrica 46: 33–50.10.2307/1913643Search in Google Scholar

Koenker, R., and J. A. F. Machado. 1999. “Goodness of Fit and Related Inference Processes for Quantile Regression.” Journal of the American Statistical Association 94: 1296–1310.10.1080/01621459.1999.10473882Search in Google Scholar

Liang, K.-Y., and S. L. Zeger. 1986. “Longitudinal Data Analysis Using Generalized Linear Models.” Biometrika 73: 13–22.10.1093/biomet/73.1.13Search in Google Scholar

Machado, J.A.F. and J.M.C. Santos Silva. 2005. “Quantiles for Counts.” Journal of the American Statistical Association 100: 1226–1237.10.1198/016214505000000330Search in Google Scholar

Machado, J. A. F., P. M. D. C. Parente, and J. M. C. Santos Silva. 2011. qreg2: Stata Module to Perform Quantile Regression with Robust and Clustered Standard Errors. Statistical Software Components S457369, Boston College Department of Economics.Search in Google Scholar

Moulton, B. R. 1986. “Random Group Effects and the Precision of Regression Estimates.” Journal of Econometrics 32: 385–397.10.1016/0304-4076(86)90021-7Search in Google Scholar

Moulton, B. R. 1990. “An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Units.” Review of Economics and Statistics 72: 334–338.10.2307/2109724Search in Google Scholar

Newey, W. K., and D. L. McFadden. 1994. “Large Sample Estimation and Hypothesis Testing.” In Handbook of Econometrics, edited by R. F. Engle and D. L. McFadden, Vol. 4, 2111–2245. New York (NY): North Holland.10.1016/S1573-4412(05)80005-4Search in Google Scholar

Penner, A. M. 2008. “Gender Differences in Extreme Mathematical Achievement: An International Perspective on Biological and Social Factors.” American Journal of Sociology 114: S138–S170.10.1086/589252Search in Google Scholar

Politis, D. N., J. P. Romano, and M. Wolf. 1999. Subsampling. New York (NY): Springer Verlag.10.1007/978-1-4612-1554-7Search in Google Scholar

Powell, J. L. 1984. “Least Absolute Deviation Estimation for Censored Regression Model.” Journal of Econometrics 25: 303–325.10.1016/0304-4076(84)90004-6Search in Google Scholar

Powell, J. L. 1986. “Censored Regression Quantiles.” Journal of Econometrics 32: 143–155.10.1016/0304-4076(86)90016-3Search in Google Scholar

Rogers, W. H. 1993. “Regression Standard Errors in Clustered Samples.” Stata Technical Bulletin 13: 19–23.Search in Google Scholar

Rousseeuw, P. J., and C. Croux. 1993. “Alternatives to the Median Absolute Deviation.” Journal of the American Statistical Association 88: 1273–1283.10.1080/01621459.1993.10476408Search in Google Scholar

StataCorp. 2013. Stata Release 13. Statistical Software. College Station (TX): StataCorp LP.Search in Google Scholar

White, H. 1980. “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity.” Econometrica 48: 817–838.10.2307/1912934Search in Google Scholar

White, H. 1984. Asymptotic Theory for Econometricians. San Diego (CA): Academic Press.Search in Google Scholar

Wooldridge, J. M. 2002. Econometric Analysis of Cross Section and Panel Data. Cambridge (MA): MIT Press.Search in Google Scholar


Supplemental Material

The online version of this article (DOI: 10.1515/jem-2014-0011) offers supplementary material, available to authorized users.


Published Online: 2015-2-27
Published in Print: 2016-1-1

©2016 by De Gruyter

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/jem-2014-0011/html
Scroll to top button